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ABSTRACT

A procedure for the numerical solution of the complete, iso-

thermal elastohydrodynamic lubrication problem for point contacts

is given. This procedure calls for the simultaneous solution of _he

elasticity and Reynolds equations. By using this theory the influ-

ence of the ellipticity parameter and the dimensionless speed, load,

and material parameters on the minimum and central film thicknesses

was investigated. Thirty-four different cases were used in obtaining

fully flooded minimum- and central-film-thickness formulas. Lubri-

cant starvation was also studied. From the results it was possible

to express the minimum film thickness for a starved condition in

terms of the minimum film thickness for a f_111y flooded condition,

the speed parameter, and the inlet distance. Fifteen additional

cases plus three fully flooded cases were used in obtaining this

formula. Contour plots of pressure and film thickness in and around

the contact have been presented for both fully flooded and starved

lubrication conditions.
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NOMENCLATURE

A,B,C constants defined in eq. (4.26)

A,B,C,_ rol_x_fqnn rnoffl c_onts
D,L,M J

i a semimajor axis of contact ellipse

a a/2c

b semiminor axis of contact ellipse

b/2d

c number of equal divisions of semimajor axis

D influence coefficient defined in eq. (4.22)

(HmiH- Hmin1D1 i00
" \ min /

D2 ff I00
c

d number of equal divisions of semiminor axis

E modulus of elasticity

2
E'

.... _ + EB

elliptical integral of second kind

F normal applied load

F integrated normal applied load

Jr elliptical integral of first kind

G dimensionless material parameter

!
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H dimensionless film thickness, h/Rx

Hc dimensionless central film thickness for a fully flooded

condition as obtained from the EHL point-contact theory, j

hc/Rx

Hc dimensionless central film thickness for a fully flooded

condition as obtained from the least-square f_t of the

data

Hmi n dimensionless minimum film thickness, hmln/Rx

Hmin, F dimensionless minimum film thickness for a fully flooded

condition as obtained from the EHL point-contact theory,

hmin,F/R x

Hmin, F dimensionless minimum film thickness for a fully flooded

condition as obtained from the least-square fit of the

data

Hmin, S dimensionless minimum fi]__ thickness for a starved lubrica-

tion condition as obtained from the EHL point-contact

theory, hmin,s/R x

Hmin, S dimensionless minimum film thickness for a starved lubrica-

tion condition as obtained from the least-square fit of

the data

H constant, initially estimated0

h film thickness

h central film thickness
C

hmin minimum film thJckness

J function of k (eq. (2.23))

k ellipticity parameter, a/b

m dimensionless inlet distance (see fig. 6.1)

m* dimensionless inlet distance at boundary between fully

flooded and starved conditions
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mW dimensionless inlet distance boundary as obtained from

Wedeven, et al. (1971)

P dimensionless pressure, p/E'

p pressure

Piv,as asymptotic Isoviscous pressure

R effective radius

RI S/S

R2 w/S

_ IwW_ml_ _00j
r radius of curvature

r defined in fig. 3.2

S approximate film thickness due to geometry of contact-

ing solids, defined in eq. (3.11)

_ S exact film thickness due to geometry of contacting

solids, defined in eq. (3.10)

U dimensionless speed parameter, un0/RxE'

u surface velocity in X-directlon

W dimensionless load parameter, F/E'R 2
x

w total elastic deformation

w elastic deformation

_. x,X.Y.X,X*_
4. y,Y,Y,Y,Y*_ coordinate systems defined in thesis

z,Z,Z,Z* J

Z viscosity-pressure index, a dimensionless constant

a pressure-viscosity constant

_,_ fluid constants used in eq. (4.13)

F curvature difference

n lubricant viscosity

197602048:3-018



xvl

dimensionless viscosity, n/n0n

nO atmospheric viscosity

Poisson's ratio

P lubricant density

dimensionless density, P/Po i

po atmospheric density

¢ PH3/2

Subscripts:

A solid A

B solid B

x,y coordinate system

D
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CHAPTER I

INTRODUCTION

i.I Statement of Problem

In many contacts between machine elements, forces are trans-

mitted through thin, hut continuous, fluid films. One of the basic

problems is to accurately describe the fluid film thickness between

these machine elements. The provision of an adequate fluid film

thickness will reduce wear and increase fatigue life and therefore

avoid early damage of the machine elements. These fluid films as re-

lated to hydrodynamic lubrication in journal and thrust bearings have

been well understood for some time, and experimental work confirms

the theory. In the early 1900's it was recognized by Martin (1916)

that many loaded contacts of low geometrical conformity, commonly re-

ferred to as nonconforming contacts, such as gears and rolling-

contact bearings, behaved as though they were hydrodynamically lu-

bricated. As opposed to the journal and thrust bearing counterpart,

the original hydrodynamic lubrication theory of gears and rolling-

contact bearings differed substantially from experimental findings.

i Only in recent years has the consideration of elastic deformation of

contacts been coupled to hydrodynamics to yield a closer agreement

of theory with experiments.

Elastohydrodynamic lubrication (EHL) then deals with the lubri-

cation of elastic contacts. The analysis requires the simultaneous

"I solution of the elasticity and Reynolds equations. _le EHL theory

differs from conventional hydrodynamic theory in the following way:

i " (i) In defining the film thickness In EHL theory, elastic de-

....................................................................i 9-7602-0483-020



i 2
formation of the contact is considered.

i (2) The viscosity is no longer independent of pressure, as is
assumed in conventional hydrodynamic theory.

(3) Hydrodynamic lubrication is characterized by surfaces that

are conforming_ but elastohydrodynamic lubrication is usually char-

acterized by nonconforming surfaces.

Because of this last point the load in hydrodynamic lubrication is

usually carried over a relatively large area. Also, typical maximum

pressures for elastohydrodynamic lubrication are of the order of

1.4x109 N/m 2 (200 000 ib/in.2), and the usual hydrodynamic pressures

generated in journal bearings are of the order of only 7x106 N/m 2

2
(i000 Ib/in. ).

1.2 Historical Developments

When two solids are in contact under zero load condition, one

of two types of contact is experienced:

_ (i) Point contact, in which two solids touch at a single point,

as in ball bearings

(2) Line contact, in which two solids touch along _ straight or

curved line, as in roller bearings

After a load is applied, the point expands to an ellipse and the

line to a rectangle. Although we are concerned with loaded contacts,

it is convenient to distinguish between these situations by referring

to them as being either point or llne contact. Lubricant removal o

the side of the contact is ignored in the line-contact problem and

the problem becomes two dimensional. This is a considerable simpli-

fication from the point-contact, three-dlmensional problem.

1.2.1 Line Contact

I_ One of the earliest solutions of the lubrication of a line con-

tact was presented in 1916 by Martin. By assuming rigid solids and

,_ _'_: an incompressible constant-viscosity lubricant he was able to deter-
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mine a lubricating film thickness. Figure l.l(a) shows typical pres-

sure and film thickness curves from Martin's solution as well as his

formula for minimum film thickness. Martin's formula greatly under-

estimates the film thickness; however, it was a useful beginning to i

the theoretical study of elastohydrodynamic lubrication of line

contacts.

Some 30 years transpired before any significant accomplishments

were made in solving the EHL line-contact problem. Grubin (1949) I!

obtained the first satisfactory solution to this problem by taking

account of elastic distortion and viscosity-pressure effects. In

Grubin's analysis it was assumed that the shape of the elastically

deformed solids in a highly loaded lubricated contact is the same as

the shape produced in a dry Hertzian contact. A pressure distribu-

tion in a Hertzian contact is shown in f_gure l.l(b). This stipula-

tion (assuming tile shape of the elastically deformed solids is the

same as is produced in a Hertzian contact) fecilitated the solution

of the Reynolds equation in the inlet region of the contact and _n-

abled the separation of the solids in the central region of the con-

tact to be determined with commendable accuracy. Grubin's approach

produced an excellent account of the physical mechanism of the lubri-

cation process in highly loaded EHL line contacts, and it marked a

very important development in the history of elastohydrodynamlc

lubrication.

Dowson and Iligginson (1961) produced an empirical formula for

isothermal EHL line contacts. This formula shows the effect of

speed, load, and material properties on minimum film thickness and

is based on their earlier theoretical solutions (1959). Figure

1.1(c) gives the pressure and film thickness for an el as tohydrody-

namic lubricated line contact. Also shown in figure 1.1(c) is the

; EtlL line-contact minimum film thickness obtained from the results of
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Dowson and Higginson (1961). In the Dowson-Higginson theory (1959)

for EHL line contacts, a new approach of introducing a solution of
i

the inverse hydrodynamic lubrication problem was presented. Nor-

maiiy a solution ot the R,_ynolds equation calls for the determina-

tion of a pressure distribution corresponding to a given film thick-

ness. In the inverse problem the film shape responsible for the

generation of a _,,on_._. pressure distribution is determined. In the
J

procedure adopted by Dowson and Higginson (1959) the computed film

shape was compared with the shape of the elastically deformed solids,

and the pressure curve was then modified to improve the agreement

between the two shapes. By using this approach they were able to

obtain satisfactory solutions of the elastic and hydrodynamic equa-

tions after a small number of numerical iterations.

The Dowson-Higginson minimum-film-thickness formula for EHL

line con+acts agrees quite well with experimental observations. In

particular, Sibley and Orcutt's (1961) X-ray method, Christensen's

(1964) slide displacement method, and Dyson, Naylur, and Wilson's

(1966) capacity method all give good agreement with the Dowson-

Higginson formula.

1.2.2 Point Contact

Most of the work on elastohydrodynamic lubrication has dealt

with llne contacts. Furthermore, the majority of the work done on

the EHL point-contact problem has been experimental. Two good ex-

amples of this experimental work are Cameron and Gohar's (1966) ob-

servation of film thickness between a steel sphere and a glass plate

using interference rings and Archard and Kirk's (1961) observation

of film th_-kness between two crossed cylinders with the same diam-

eter makin_ Jn angle of 90° in a simulated point contact.

The first step toward a theoretical solution of the EHL point-

_ contact problem was presented by Archard and Cowklng (1966). They

___-__......,,r...........:__-_.... ............._ .............• ' _ _.,_ i ......................iiiii ii ";_
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adopted an approach similar to that used by Grubin (1949) for llne-

contact conditions. The Hertzian contact zone was assumed to form

4
a parallel film region, and the generation of high pressure in the

approaches to the Hertzian zone was considered.

Cheng (1970) also used a Grubin type of approach in determin-

lng a film thickness formula for the EHL of point contacts. He

evaluated the deformation by using the Hertz equation and then ap-

plying the Reynolds equation to this geometry,
i

• Recently an interesting numerical solution of the EHL point-

contact problem for a sphere near a plane was put forth by Ranger,

et al. (1975). This solution is presented in dimensional terms, which

thereby limits its general usage. A puzzling feature of the Ranger,

et al. work is the fact that his resulting equation for the minimum

film thickness has a positive load exponent, which contradicts exper-

iments (e.g.,Cameron and Gohar's(1966) and Archard and Kirk (1961)).

1.3 Approach to the Problem

In the literature the EHL line-contact problem is completely

solved, with theory and experiment agreeing well with each other.

For the EHL point-contact problem quite a bit of experimental work

has been done, but the theoretical solution to the complete Isother-

mal elastohydrodynamlc lubrication problem for point contacts has

not emerged. The reason for this _s the extreme dlfficulty of the

numerical coupling of the elasticity and Reynolds equations and the

vast increase in computing involved in a transfer from line- to

point-contact condlti_ms. The work presented in this dissertation

is an attempt to solve this problem. A brief description of the ap-

proach to the problem follows.

1 The radii of curwiture of the contacting solids ire used to de-

fine ttle ratio of the semlm, t jor and semlmlnor axes of the contact

ellipse. From this ratio and the nommil applied load, the semimajor

t
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and semiminor axes of the contact ellipse are determined. In the !

elasticity analysis the computing zone is divided into equal rec-

I tangular areas, and a uniform pressure is applied over each area.

Elasticity studies are performed to determine how finely the semi-

major and semimlnor axes need to be divided to achieve a given ac-

curacy and how far from the center of the contact deformation be-

comes insignificant compared with the separation of the solids. '

These equations were investigated for light and heavy loads and

for geometries ranging from a ball on a plate to a line-contact

configuration. The answers to these questions determined what the

computing zone should be in and around the contact ellipse.

In the numerical analysis of the Reynolds equation a "phi"

(_) substitution is used to aid the relaxation process, where

is equal to the pressure times the film thickness to the 3/2 power.

: The pressure-viscosity analysis of Roelands (1966) is used. The

_ numerical coupling of the elasticity and Reynolds equations results
E

? in a converged solution for the pressure profile. This pressure

profile is then integrated over the computing zone to give the value

of the corresponding normal applied load. This load is then com-

pared with the input load, and corrections are made to the film

thickness until these two loads are in agreement.

The most important practical aspect of the EHL polnt-contact

theory is the determination of the minimum film thickness within the

contact. By using the variables resulting from the theory, the di-

mensionless minimum film thickness can be written as a function of

the dimensionless load, speed, material, and ellipticlty parameters.

The influence of these parameters on minimum film thickness was

I investigated. The elllptlclty parameter was varied from i (a ball

on a plate) to 8 (a configuration approaching a line contact), The
b

i -t dimensionless speed parameter was varied over a range of nearly two
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orders of magnitude. The dimensionless load parameter was varied

over a range of one order of magnitude. Solid materials of bronze,

I
steel, and silicon nitride and Iubricants of pa_affinic and naph-

thenic mineral oiIs were varied in obtaining the exponent In tile

dimensionless material parameter. Thirty-four different cases were

used in obtaining the fully flooded minimum-film-thickness formuIa.

In addition to the minimum-ftlm-thlckness formula a central-film-
J

thickness formula was developed. Contour plots are also shown that
!

indicate In detail the pressure spike and the two side lobes in which

the minimum film thickness occurs. These theoretical solutions for

film thickness have all the essential features of the previously re-

ported experimental observations based upon optical interferometry.

The effect of lubricant starvation was also investigated. This

study of lubricant starvation was achieved simply by reducing the

inlet distance, which is the distance from the center of the contact

to the edge of tile computing area. A fully flooded condition exists

when the dimensionless Inlet distance ceases to influence In any

significant way the minimum film thickness. Starting from a fully

flooded condition and decreasing the inlet distance, tile value at

which the minimum film thickness first starts to change is called

the fully flooded - starved boundary° SImpl_ expressions for the

fully flooded - starved boundary were obtained as a function of tile

fully flooded central or minimum film thickness. Simple expressions

defining tile central and minimum film thicknesses for a lubricant

starvation condition were also obtained. Fifteen different cases

from those presented In the futly flooded results were used in ob-

taining these formulas, t, arthermore, the effects of lubricant

starvation are clearly si_own in contour plots of prt.s._ .e ,t,'d film

thickness.

RI_RoDucItlI?,ITy OP ]}iN
'_PI¢;IX'AI,P\t;2 I.'3I'_)OR
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CHAPTER 2

GEOMETRY OF CONTACTING SOLIDS

2.1 Curvature Sum and Difference

Two solids having different radii of curvature in a pair of

principal planes (x and y) passing through the contact between Lhe

solids make contact at a single point under the condition of no ap-

plied l-ad. Such a condition is called "point contact" and is

shown in figure 2.1, where the radii of curvature are !enoted by

r's. In the analysis that follows it was assumed that for convex

surfaces as shown in figure 2.1 the curvature is positive but that

for concave surfaces the curvature is negative.

The curvature sum and difference are defined as

i 1 1
.... + - (2.1)
R R R

x y

\ x y/

where

i l l
........ + .... (2.3)
Rx rAx rBr

1 l I
- = -- + -- (2.4)
Ry rAy rBy

2.2 Geometric Separation of Ellip_.s3_ldill. S_911_1:,_

Figure 2.2 shows how the geometric separation between two ellip-

sotdal solids can be made equtwllent to that between a single el llp-

soldal solid near a plane. The geometric requirement is that for any

values of x and y In figure 2.2(;t) the geometric separiitlon must

be equivalent to the sep:tratlon ;it tilt, same x and y s|lowtl In fig-
p

19/6020483-027
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ure 2.2(b). From figure 2.2(a) the mathemdtical expression for the

i separation of the two ellipsoidal solids can be written as

S = SAx + SBx + SAy + SBy (2.5)

From figure 2.2(b) the mathematical expression for the separation of

a single ellipsoidal solid near a plane can be written as

S = S + S (2.6)
x y

Therefore, for the two expressions to be equivalent, the following

must be true: !

S = + (2 7)x SAx SBx

S = + (2 8)
y SAy SBy •

From figure 2.2(a-i) the following can be written:

2 2 2

rAx = x + (rAx - SAx) (2.9)

or

2 - SAx) (2.10)x = SAx(2rAx

:.... But for the problem being considered, 2rAx >> SAx; so that equation

(2.10) can be rewritten as

2
x

SAx _ 2rAx (2.11)

This is the well-known parabolic approximation to the circular sec-

tion of the solid. Similarly, by making use of figure 2.2 the fol-

lowing can be written:

2

SBx _ 2rBxX where 2rBx >> SBx (2.12)

2

SAy __X__2rAy where 2rAy >> SAy (2.13)

2

SBy _-Y--2rBy where 2rBy >> SBy (2.14)

!
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2

S _ x where 2R >> S (2.15) :
x 2R x x

x
r

2

S _-Y--- where 2R >> S (2.16)
y 2R y y

Y

Substituting equations (2.11) to (2.16) into equations (2.7) and (2.8)

gives

1 1 1
..... + -- (2.17)
R rAxx rBx

1 1 1

- + -- (2.18)
y ray rBy

But equations (2.17) and (2.18) are exactly equations (2.3) and (2.4),

respectively. Therefore the equivalency shown in figure 2.2 is sat-

isfied. Henceforth the geometry of an ellipsoidal solid near a plane

as shown in figure 2.2(b) will be used.

2.3 Ellipticity Parameter

When the ellipsoidal solid Just touches the plane shown in fig-

ure 2.2(b), contact is made at a single point when no load is ap-

plied. When a normal load is applied to the ellipsoidal solid, the

point expands to an ellipse with a as the semimajor axis and b

as the semiminor axis. It is assumed that the plane remains rigid

while the equivalent elastic ellipsoid is pressed against it. The

normal applied load lies along the axis that passes through the cen-

ter of the solid and through the point of contact and is perpendicu-

:'_ lar to the plane shown in figure 2.2(b). For the special case where

R = R , the resulting contact is a circle rather than an ellipse.
x y

The ellipticity parameter (k) is defined as

k = _ (2.19)
b

I where

a semimaJor axis of contact ellipse

b semiminor axis of contact ellipse
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Harris (1966) has shown that the ellipticity parameter can be written

to relate the curvature difference and tne elliptic integrals of the

first and second kind as

J(k)= r) (2.20)
where

- - sin 2 d_ (2.21)
I

'10

7r/2 1/2

":o/L de) (2.22)

A one-point iteration method that has been used succ_ssfully in the

past by Hamrock and Anderson (1973) was used, where

kn+ I = J(kn) (2.23)

The iteration process is continued until kn+ I differs from kn
-7

by less than ixlO . Note that the ellipticity parameter is a func-

tion of the radii of curvature of the contacting solids only

k = f (rAx, rBx, ray, rBy)

When the ellipticity parameter (k), the normal applied load

(F), Poisson's ratio (_), and modulus of elasticity (E) of the con-

tacting solids are known, the semimajor axis of the contact ellipse

can be written as

a = _" _-E-' ") (2,24)

where

E' = 2
2 2 (2.25)

i - _A 1 - vB

EA EB

', *_' By making use of eqt,ation (2.19) tilesemiminor axis of the contact
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ellipse can be written as

b = _ (2.26)

Therefore, from the geometry of the contacting solids the ellipticity

parameter, as well as the semimajor and semiminor axes, has been de-

fined. These parameters form the foundation of the EHL point-contact

analysis.
I
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CHAPTER 3

NUMERICAL EVALUATION OF THE ELASTIC DEFORMATION OF

SOLIDS SUBJECTED TO A HERTZIAN CONTACT STRESS

Elastohydrodynamic lubrication is defined _s the study of

situations in which elastic deformation of the surrounding solids
"o

plays a significant role in the hydrodynamic lubrication process.

This chapter is not concerned with the hydrodynamic lubrication

process, but only with deformation due to the pressure of one

elastic solid upon another.

Dowson (1965) distinguishes between two modes of deformation

that may exist in machine elements. In one mode, the contact
geometry may be affected by overall distortion of the elastic ma-

chine element resulting from applied loads, as shown in figure

3.1(a). In the other, the normal stress distribution in the vi-

cinity of the contact zone may produce local elastic deformations

that are significant when compared with the lubricant film thickness,

as shown in figure 3.1(b). This is the mode of deformation with

which this present investigation is concerned. The important dis-

tinction is that the first form of deformation is relatively insen-

sitive to the distribution and magnitude of the stresses in the con-

tact zone, whereas the second mode of deformation is intimately

linked to the local stress conditions.

The correct evaluation of elastic deformation on the surface of

a solid depends upon an adequate representation of the applied nor-

mal pressures. The simplest procedure is to divide the actual pres-

sure distribution into rectangular blocks of uniform pressure and to
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permit each rectangle to be of such small dimensions that adequate

i, predictions of elastic displacements ensue. More complex represen-
tations of two-dimensional pressure distributions within each rec-

tangle would generally permit larger rectangles to be used, but the

additional complexity of the expressions and added computation time

make it desirable to exploit the simpler representation to the full-

est. This chapter is devoted to a study of the adequacy of repre- i
l

senting the applied normal pressures by rectangular blocks of uni-

form pressure.

The deformation analysis is developed in general form since it

will be used in later chapters to calculate elastic deformation in

the elastohydrodynamic lubricat_on of point contacts. To evaluate

the influence of mesh or block size upon accuracy, the numerical in-

vestigation of this chapter co_ !ders only Hertzian contact stress

distributions.

The deformation analysis it elf _ssumed that the contact zone

can be divided into rectangular areas and that the pressure is uni-

form within each rectangular area. Once the elastic deformation

had been formulated, investigations were performed to answer the

following questions:

(i) How fine do the semimajor and semiminor axes need to be

divided to achieve a given accuracy in deformation prediction?

(2) How far from the center of the contact does deformation be-

come insignificant compared with the separation of solids?

These questions were investigated for both light and heavy spplied

loads and for both equal spheres in contact and a contact that is

common to the outer race of a ball bearing.

I 3.1 Elastic _eformation Analysis

In chapter 2 the general geometry of two ellipsoldal solids in

.... elastic contact was described. In the subsequent analysis it will

L _____
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be convenient to consider the deformation of an equivalent elastic

half-space subjected to a Hertzian pressure distribution over the el-

l
lipse of semimajor and semiminor axes, a and b, as previously de-

fined. The resulting elastic deformation can be considered to be

equivalent to the total deformation of two elastic ellipsoids having

elastic constants EA,_A and EB,VB, respectively, if the half-

space is allocated the equiralent elastic parameter (E') defined by

equation (2.25).

" Once the semimajor and semiminor axes of the contact ellipse

have been defined, the elastic deformation that occurs inside and

outside the contact zone can be evaluated. Figure 3.2 shows a rec-

tangular area of uniform pressure with the coordinate system to be

used. From Timoshenko and Goodier (1951) the elastic deformation at

a point (X,Y) of a semi-infinite solid subjected to a pressure (p)

at the point (XI,YI) can be written as

_' _ 2p dX1 dY1
dw =

_E'r

The elastic deformation at a point (X,Y) due to the uniform pressure

over the rectangular area 2a x 2b is thus

- 2P dXl dY1

w = -_- i y--_l)- -- - Xl)2%,'(Y- + (x-

where

p = 2
E'

Integrating the preceding equation gives

- 2
w = _'D (3.i)

w,,ere
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D = (X + b)in[_ + a) + _(Y" + a)2 + (X + 'b)2I_ -
I [(Y a) + (Y a) 2 + (X + b) 2$

X - b) + _(Y + a) 2 + (X - _)2

+ (X _ _)ln[(__Y.-a) + _(Y -._)2.+ (X-- b)21t(Y+a) + _I(_+a)2+ (X-_)2

+ (Y - a)ln (x - g) + V(Y - 7) 2 + (x - g) (3.2)
(x+g) + _(Y _)2+ (X+b)

As a check on the validity of equation (3.1) the followfng two

cases were evaluated"

Case 1: For b = a and X = Y ; O, equation (3.1) reduces to

-- 16 --
w =- Pa ln(1 + -_-) (3.3)

Equation (3.3) represents the elastic deformation at the center of a

square of uniform pressure. Thi._ equation is in agreement with that

shown by Timoshenko and Goodier (1951).

Case 2: For b = a and X = Y = a, equation (3.1) reduces to

--w= --8 p_ ln(l + -_) (3.4)
II

Equation (3.4) represents the elastic deformation at the corner of a

square of uniform pressure. This _quation is also in agreement with

that of Timoshenko and Goodier (1951). From equations (3.3) and (3.4)

we find the corner deformation to be one-half the deformation at the

center of a square block of pressure.

Now the elastic deformation (w) in equation (3.1) represents

the elastic deformation at a point (X,Y) due to a rectangular area

2a x 2b of uniform pressure (p). If the contact ellipse is divided

into a number of equal rectangular areas, the total deformation at a

_, point (X,Y) due to the contributions of the various rectangular areas
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of uniform pressure in the contact ellipse can be evaluated numer-

ically. Figure 3.3 shows how the area inside and outside the contact

I ellipse may be divided into a number of equal rectangular areas.

For purposes of illustration the contact was divided into a grid of

6 x 6 rectangular areas. The effects of the fineness of this grid

are discussed in section 3.4 of this chapter entitled Conditions In-

vestigated. Figure 3.3 can be used to write the total elastic de-

formation, cause4 by the rectangular areas of uniform pressure

within the contact ellipse, at any point inside or outside the con-

tact ellipse as

6 6

= _ _ _ Pi,jDm, s (3.5)
Wk'_ _ j=l,2,.., i=1,2 ....

where

m = Ik - i I + 1 (3.6)

s = I£ - Jl + i (3.7)

Note that DI,1 would be D in equation (3.2) evaluated at

X=O,Y=O, while D2, 3 would be evaluated at X=2b,Y=4a.

Equation (3.8) points out more explicitly the meaning of equa-

tion (3.5)• The elastic deformation at the center of the rectangu-

lar area Wg, 5 (shown in fig. 3.3) caused by the _ressure of the

various rectangular areas in the contact eJllpse can be written as

2

= _ {PI,IDg,5 + P2,1Ds,5 + . . + P6,1D4,5w915

+ P1,2D9,4 + P2,2D8,4 + . . + P6,2D4,4

+ P1,6D9,2 + P2,6D8,2 + . • + P6,6D4,2 } (3.8)

3.2 Hertzian Pressure Distribution

In this chapter it Is assumed that within the contact ellipse

the pressure is described by the theory of Hertz (1882). Hertz

(1882), using a purely elastomechanical process, was able to describe
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the pressure distribution developed during contact of an ellipsoidal

and a plane solid (as those described in fig. 2.2(b)) that are un-

lubricated. Hertz found this pressure distribution to be semiellip-

soidal, and for any arbitrary point within the contact ellipse it

can be described by the following equation:

Note that the coordinate system common to figure 3.3 is used in equa-

tion (3.9). Inside the contact area the pressure was assumed to be

described by equation (3.9); outside the contact area it was assumed

to be zero. Therefore, for example, from figure 3.3, P3,4 would be

equivalent to the dimensionless pressure (P) from equation (3.9)

evaluated at X = 5b and -Y = 7a.

3.3 Film Thickness

By making use of equations (2.5) and (2.9) developed in chap-

ter 2 the exact geometric separation between the ellipsoldal solid

and the plane shown in figure 2.2(b) for the coordinate system

developed in figure 3.3 can be written as

S = Rx - _R2x - (X- b)2 + Ry - _R$- (Y- a) 2 (3.10)

As discovered in chapter 2, if 2R >> S and 2R >> S , an ap-
x x y y

proximate expression for the separation between the solid and plane

.qhown in figure 2.2(b) can be written as

s --(x + - a)2
-'--2R '--½-R-- (3,11)

x y

The degree to which the approximate equation (3.11) represents the

exact separation of the ellipsoidal solid and plane is determined by

the following ratlo:

S

R 1 -- - (3.12)
S

The film thickness in an elastohydrodynamtc lubricated point""" 1976020483-037



19

contact can be written as

h(X,Y) = h + S(X,Y) + w(X,Y) (3.13)I °
where

h constant
O

S(X,Y) the approximate geometric separation of the ellipsoidal

solid and plane

i

w(X,Y) elastic deformation

The significance of the elastic deformation relative to the geometric

separation of the elllpsoidal solid and plane can be expressed as

W

R2 = _ (3.14)

3.4 Conditions Investigated

Figure 3.3 shows that we need to be concerned with the following

questions:

(i) How fine must the divisions of a and b be? In this

chapter we assume that the number of divisions of a and b will

be the same. Therefore, _e can define the number of divisions as

a b
d ........ (3.15)

In this thesis we let d equ,.1 3, 4, and 5.

(2) How far from the semimajor and semimlnor axes does R2

(eq. (3.14)) become insignificant? In this study R2 was evaluated

at distances from tile center of the contact of four times tile semi-

maLjor and semiminor axes.

To check the accuracy of the elastic deformation results for

d of 3, 4, and 5, the number of equal divisions along the semtmajor

aml semlminor axes was Increased by three times (d of 9, 12, and

15), and then corr{'sponding points were compared. The following

equation describes the percentage accuracy of tile results compared

with tile finest-mesh-size predictions:

1976020483-038
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R3=lwdW3dlxi00 C316
l

The limiting conditions that were evaluated on a computer are

shown in table 3.1. It was speculated that conclusions that could

be made for these limiting conditions could also be made for any In-

termediate conditions. The four llmitlng conditions shown in ta-

i

ble 3.1 are two extremes of applied normal load; a light load of

8.964 newtons (2 lbf), and a heavy load of 896.4 newtons (200 lbf).

The two extremes of curvature of the solids shown in table 3.1 are

equal spheres in contact and a bali and outer race of a ball bearing.

The elliptical eccentricity parameter (k = a/b) is 1 for the equal

spheres in contact and 5 for the ball and outer race.

The equations thus far developed were programmed on tile Leeds

University International Computers Limited (ICL) model I906A digttai

computer.

3.5 Discussion of Results

Tables 3.2 to 3.13 glve the characteristics of the deformed

shape of the contacting solids along the semlmajor and semimlnor

axes when the axes are divided into three, four, and five equal dl-

visions and the conditions of table 3.1 prevail. Some observations

can be made about these tables:

(i) Because of the coarse grid and the elliptical pressure pro-

[' file, there Is not much decrease In pressure h_ going from the In-

nermost to the outermost point within the contact area.

(2) The agree_mt of S with S is seen to be good and is

borne out by the ratio of the two e×pressed in terms of RI. The

biggest disagreement is in table 3.7 where RI * 0.9870, which means

that S is in agreement with S within 1.3 percent. Because of

this good agreement, S will be used to define the geometric sepa-

'. ration of the ellipsoidal solid near a plane.
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(3) The ratio R2 of the elastic deformation to the _;eometric 4
separation of the contactihg solids is seen to decrease substantially i

with increasing distance from the center of the contact zone. Fur-

thermore, the predictions of the distance at whJch the elastic de-

formation becomes insignificant compared with the geometric separa-

tion of the solids do not change whether we have two equal spheres

or a sphere and an outer race in contact.

(4) The separation due to the geometry of the contacting solids
J

• plus the elastic deformation (S + w) is almost constant in the con-

tact zone. The value of (S + w) at the farthest point from the

center of the contact zone and yet still within it differs the most

from the other values of (S + w) in the contact zone.

(5) The percentage difference in elastic deformation calcula-

tions for two mesh sizes differing by a factor of 3 was shown to be

small. For the worst case in table 3.11, R 3 was equal to 7.494 per-

cent. That is, the elastic deformation for d = 3 differs from the

elastic deformation at corresponding point.-,when u = 9 by 7.5 per-

cent, which is extremely good_

(6) Comparing table 3.2 with 3.5, 3.3 with 3.6, and so forth,

which amounts to changing the normal applied load from 8.964 newtons

(2 ibf) to 896.4 newtons (200 Ibf), leads to the folh_wing conclu-

sions :

(a) R2 does uot change in the corresponding tables. That is,

regardless of tile normal applied load, the ratio of the elastic de-

formation to the geometrh: separation of the solids is t,nchanged.

(b) R] does not ch:u,_t, in the correspondinR tables. This con-

dition is undoubtedly because of the condition m,.nti_,ne,! in (a).

To better illustrate the results shown in the table._;, figures

_.4 to '_.4 are presen.ed. In fi_,ures _.4 to _.h th,. solid curves

represent the case ,_f equal spheres in contact, which is r,.pre:_entt.d

k.

] 97602048:3-040
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by R = R = 0.5558 cm ((].2188 in.); and the dashed curves represent
x y

the ball and outer race in contact, which is represented by R =
X

1.286 cm (0.5055 in.), R = 15.0u cm (5.S06 in.). Also as a result
Y

of the nbservation made in discussing the tables that R2 and R 3

are not functions of the notnml applied load, the results shown in

figures 3.4 to 3.6 apply for any normal applied load.

Figures 3.4(a) and (b) show the effects of the location along

the semlmajor and semlminor axes, respectively, on the percentage

difference in elastic deformation for d of 3 and 9. llere an "edge

effect" can be seen, which is a rapid rise in percentlge difference

in the film thickness when d = 3 and for corresponding points when Q

d = 9. This rapid rise is due to the pressure being either zero if

the center of tile rectangular area shown in figure 3.3 is outside the

contact zone or of the order of 105 if the center of the rectangular

area is within the contact zone. However, it is speculated that in

lubricated contacts, where the pressure gradients are, ir general,

more gradual than those encountered near the edge of a dry tlertz_;m

contact, this edge effect is likely to be less significant. Also

note that outside the contact zone the value of R t decreases.

Figures 3.5(a) and (b) show the effect cf the loca, i_m ;tlmlg

the semimajor and semimlnor axes, respectively, on tht' p_'rcen_;|ge

difference in elastic deforw'ttim_ for d of ], 4, /lad 5 and the more

exact e!.asttc deforrmitlon fc_r d of q, 12, n,l 15. These fi_'ures

show a large drop in R 3 from d = 4 to d = 5, whict, ;tls_, brin_:s

down the edge effect considerably. 'l'h,.re is, thvrvf_rv, ;l _'._,d c,lsv

for letting d = 5 in any further computer vvaluations.

Figures 3.6(a) aiId (b) show the efl,.ct of the l_c'ati,m .ilon_,. tht.

semimaior :,rid semimtuor axes, respectively, _tl th,' r.tti,, ,,t th,. elas-

tic d,.'formation to the geometric sep.tr;itilm ,_f the ,,llips,i,l,1 _it,lid _¢

; near a plane. 'l'hes... fiRu/es show tht" di_;t;ince lr_,m th,. _,.ml_L},_r and {

a

976-02-0 ,-8N04i
iii i ii • i .alnl
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semiminor axes at which the elastic deformation becomes insignifi--

cant. To be more specific, from the curves we see that for equal

spheres in contact (represented by solid lines in the figures)

R2 < 0.05 corresponds to x > 2.6 b and y > 2.6 a. Thus, the

elastic deformation is less than 5 percent of the geometLic separa-

tion at a distance from the center of the contact zone that is no

less than 2.6 times the semimajor or semiminor axis. For the ball
J

and outer race in contact, R2 < 0.05 corresponds to y > 1.9 a
!

and x > 4.0 b. In other words, the elastic deformation is less

than 5 percent of the geometric separation at a distance of only 1.9

times the semimajor axis and 4.0 times the semiminor axis from the

center of the contact zone.

Figures 3.7(a) and (b) show the effect of the location along

the semimajor and semiminor a_es, respectively, on the geometric

separation of the ellipsoidal solid near a plane plus the elastic

deformation when the load is 8.964 and 896.4 newtons (2 and 200 ibf)

and the ellipticity parameter (k) is i and 5. The conditions men-

tioned in this figure correspond to those of table 3.1. These fig-

ures show the sum of the film thickness components to be essentially

constqnt within the contact zone.

Figure 3.8 shows the effect of the number of divisions across

the ellipse axes on the computer time for running all four conditions

shown in table 3.1. Here we see that the computer run t£me quickly

becomes exorbitant as d is increased. This is why only _elected

data for R3 were obtained.

3.6 Concluding Remarks

A numerical analysis of the elastic deformation of a contacting

ellipsoidal solid and plane has been performed. The analysis as-

sumed that the pressure in the contact zone was Hertzian. It also

assumed that the contact zone could be divided into rectangular areas

R@t_ODUCIIUIffTY OP Tltle
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with uniform pressure within each rectangular area. The resulting

equations were programmed on a digital computer. Four limiting con-

ditions were evaluated on the computer. They consist of two ex- _ i

Itremes of applied normal load: a light load of 8.964 newtons

(2 ibf), and a heavy load of 896.4 newtons (200 ibf). The two other

extremes are of the curvature of the contacting solids: two equal

spheres in contact, and a ball and outer race of a ball bearing. It

was speculated that conclusions that could be made for the limiting

conditions could also be made for any intermediate condition.

The results indicate that division of the semimajor and semi-

minor axes into five equal subdivisions is adequate to obtain ac-

curate elastic deformation results. Also the elastic deformation

becomes insignificant compared with the geometric separation of a

sphere near a plane at a distance from the center of 2.6 times the

semimajor axis. For a ball and outer race in contact, a similar

observation applied at a distance from the center of 1.9 times the

semimajor axis and 4.0 times the semiminor axis. Finally, the geo-

metric separation plus the elastic deformation (S + w) was almost

constant in the contact region. However, numerical values of

(S + w) at points near the edge of the Hertzian contact show that a

slight edge effect or error may be encountered in such regions.

In lubricated contacts, where the pressure gradients are, in gen-

eral, more gradual than those encountered near the edge of a dry

I Hertzian contact, this effect is likely to be less significant.

|

,\
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CHAPTER 4

THEORETICAL FORMULATION OF THE ELASTOHYDRODYNAMIC

LUBRICATION PROBLEM

A

The elastic deformation model was developed, along with an

i
appropriate nodal structure, in chapter 3. The theoretical for-

mulation of the elastohydrodynamic lubrication problem is given in

this chapter. The procedure here is to give the Navier-Stokes equa-

tions of motion as well as the continuity equation. Then with the

assumptions that are imposed on the problem, these equations are re-

duced to the Reynolds equation. The pressure-viscosity formula of

Roelands (1966) is used. In the numerical analysis of the Reynolds

equation, a _ analysis (where ¢ is equal to the pressure times

the film thickness to the 3/2 power) is used to help the relaxation

process. A standard finite difference representation is applied to

the various terms in the Reynolds equation. By applying a Gauss-

Seidel relaxation method to the finite difference form of the Rey-

nolds equation, a converged solution of ¢ for the complete nodal

structure is obtained. When ¢ is known, the pressure at the

various nodes can be obtained. When the pressure is known, the in-

tegrated load is calculated, and adjustments are made for the

initially guessed film constant (Ho) until the integrated load and

the input load are in agreement. A flow chart of the computer pro-

gram is given, as well as the complete computer FORTRAN listing.

4.1 Reynolds Equation

1
The derivation of the Re/holds equatiot, governing the pressure

distribution in an elastohydrodynamic lubricated (EHL) conjunction

1976020483-044
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is based on the Navier-Stokes equations of motion and the continu-

ity equation. The most general form of the Navier-Stokes equations

of motion for a Newtonian fluid in Cartesian coordinates as obtained

from Pal (1956) is

_= _ n _-_- a-_-_ +_Lnk-_ +

ov _+,_[(_v_u_0)]_[0_(__u)]
+_E_(_ _)]+ , .-_ + (4.2)

[( )] _(_ _)]P _tt = _ a_£ + 2 a a_ au av a_ au- a-_ -_ _--_ n 2 aZ aX _ + _ +

+ _ , + -_ (4.3)

where

_ a a aD a + u + v + _ _ (4.4)
Dt at _ _ aZ

In equations (4.1), (4.2), and (4.3) the left side corresponds to

the inertia terms and the right side contaln_ the body force, pres-

sure, and viscous terms, in that order. The following assumptions

are made in solving the EHL point-contact problem:

(1) No external forces act on the film. Thus,

_:_:_:o

_, (2) Fluid inertia is small when compared with viscous shear.

These inertia forces are associated with acceleration of the fluid.

Thu s,

Du Dv Dw
-- = = -- = 0

Dt Dt Dt

(3) There is no variation of pressure across the fluid film.

Thus,

_Z

1976020483-045
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(4) The viscosity (q) and density (p) are constant in the

direction.

I (5) The radius of curvature of the solids bounding the oil film

is large when compared with the thickness of the lubricant films.

This assumption allows any effects due to curvature of the oil film

to be neglected.

(6) There is no slip between the fluid and bounding solids at

common boundaries. Thus,

= 0, u = uA, v = 0

Y = h, u = UB, v = 0

(7) Because of the geometry of the fluid film, the derivatives

of u and v with respect to Z are large when compared with all

other velocity gradients.

(8) Steady-state conditions are considered.

With these assumptio, s, the Navier-Stokes equations of motion

(eqs. (4.1), (4.2), and (4.3)) reduce to the following:

_ _2u-- - _ -- (4.5)

[_X 8_2

_ = 32vn ---- (4.6)

- 0 (4.7)
]Z

The velocity distributions (u) and (v) can be found by integrating

equations (4.5) and (4.6) twice whi]e using the boundary conditions

according to assumption 6.

The equation of continuity, representing mass conservation, is

_'!(__)_u) + '!.C.Y_) = 0 (4.8)

Coupling the velocity distributions with the equation of continuity

leads to the following equation, which was developed by Reynolds

(1886) and carries his name:

197(3020483-048
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_P + = 12u (oh) (4 9)

I where

_ uA + uB
U =

2

Letting

X* = b' Y*
a' 7= Po i

(4.1o)

-- q H h E_p7'
q = qo =Rx' P =

equation (4,9) can be rewritten as

where

k ellipticity parameter, a/b

U dimensionless speed parameter, q0u/E'Rx

Equation (4.11) is the Reynolds equation in dimensionless form.

The normal requirement is for dimensionless parameter (P) to be de-

termined. Before proceeding, however, the dimensionless density (O),

the dimensionless viscosity (q), and the dimensionless film thick-

ness (H) need to be formulated.

4.2 D_ensi__

At the high pressures that exist in the elastohydrodynamic

lubricating film, the liquid can no longer be considered as an in-

compressible medium, and the dependence of the density on the pres-

sure must be considered. From Dowson and Higginson (1966) the dimen-

sionless density for mineral oli can be written as

0 = i + 0.009 p_ (4.12)
1 + 0.026 p

where

p gage pressure, ton/in. 2

1976020483-04i
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Therefore, the general expression for the dimensionless density can

be written as

7 = i + ----IPE'
i + 6PE' (4.13)

where B and y are constants dependent on the fluid.

4.3 Viscosity

As long ago as 1893, Barus proposed the following formula for

the isothermal viscosity-pressure dependence of liquids:

_/ ap (4.14)

where

n dynamic viscosity at gage pressure (p)

n0 dynamic viscosity at atmospheric pressure

a pressure-viscosity coefficient of lubricant

The pressure-viscosity coefficient (_) in equation (4.14) character-

izes the liquid considered and depends only on temperature, not on

pressure. Although equation (4.14) is extensively used, it is not

generally applicable and is valid as a reasonable approximation only

in a moderate pressure range.

Because of the shortcomings of equation (4.14), several iso-

thermal viscosity-pressure formulae have been proposed that usually

co_tain two or more parameters instead of Barus's (1893) single pa-

rameter. One of these approaches, which is used in this thesis, is

that of Roelands (1966), who undertook a wide-ranging study of the

e_fect of pressure upon the viscosity of the lubricant. For iso-

thermal conditions, the Roelands (]966) formula (p. 95) can be

written as

Z/

1 200 : (log rlo + 1.200)(I +--'J_- } (4.15)I_ _ g
0 +

2000\ /

*log denotes the common or Briggsian logarltilm, lOglo ;
In denotes the natural or Napierian logarithm, log e.
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where

p gage pressure, kgf/cm 2

I Z viscosity-pressure index, a dimensionless constant

Taking the antilog of both sides of equation (4.15) gives

(log no+l.2) (i+20--_o0)Z-l.2
q= i0

Rearranging this equation yields
l

n = no x i0

For the dimensionless form of the viscosity given in equation

(4.10), this equation becomes

r,= no qo x i0

Rearranging terms in this equation gives

1- I+ PEr Z

where

rlo_ = 6.31x10 -5 N s/m2(0.0631 cP)

and 8 is a constant equal to I9 609 N/cm 2 (28 440 lbf/in.2).

In equations (4.13) and (4,16), care must be taken to ensure that

the same dimensions are used in defining the constants.

In the RoeLands (1966) formulation the lubricant is defined by

the atmospheric viscosity (rl0), the viscosity-pressure index (Z),

and the asymptotic isoviscous pressure (Piv ). The equation de-,as

scribing the asymptotic i._oviscous pressure can he written as

' JP (4.17)I Piv,a,_ = qO _/

t_lok (1964) arrived at the vet v import;rot conclu,_;ion that all EI{I,
t

results aci,ieved hitherto for an exponential viscosity-pressure de-

" _'_",]_,18 rl 11,1111n1111 .................

1976020483-049
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pendence (eq. (4.14)) can, to a fair approximation, be generalized

for any given nonexponential dependence simply by substituting the

I reciprocal of the asymptotic isoviscous pressure (i/Piv,as) for the

viscosity-pressure coefficient (_) occurring in those results. This

implies that

c_ _ 1 (4.18)

Ply,as
d

It might be pointed out how the values of the parameters q0' Z,

and Ply,as are obtained for a given lubricant by using the Roelands

" (1966) formulation. From table II-i (p. 48 of Roelands (1966)), for

a paraffinic mineral oil, coded 31-G, the atmospheric viscosity (nO)

is found to be &!.l centipoise. From table IV-2 (p. 106 of Roelands

(1966)), for the same lubricant the viscosity-pressure index (Z) is

found to be 0.67. When the atmospheric viscosity (qo) is known, the

F following expression can be evaluated:

IT
_ log(log rl0 + 1.2) = 0.&493

i,

!,' Making use of this equation in table XI[-2 (p. 452 of Roelands (1966))

for Z = 0.67 leads to

log Ply,as = 2.695

:' Ply,as = 4859 N/cm 2

This, then, establishes the procedure used to obtain the parameters

q0' Z, and Ply,as for a given lubricant.

4.4 Film Thickness

b

As was .stated in chapte[ 2, the separation due to the geometry

of the two ellipsoidal solids shown in figure 2.1 can be adequately

described by an equivalent e[lipsoidal solid near a plane. The ge-

ometric requirement is that the separation of the elllpsoldal solids

in the initial and equivalent situations should be the sa ' ;It equal

values of X and Y. Therufore, from figure 4.1, the separation due

to the geometry of the two t.lltpsolds shown in figure 2.1 can be

''" .... 1976020483-05(
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written for an elllpsoidal solid near a plane as

1 S(X,Y-) = f_ - rob)2 + (_- - _.af (4.19)2R 2R
x y

where

m constant used to specify length of inlet region

constant used to specify length of slde-leakage region

For purposes of illustration the mesh described in figure 4.1 will

still be used, where m = 4 and _,= 2. However, the equations

developed will be written in general terms.

Figure 4.2 gives a physical description of the film thickness

and its components for an ellipsoidal solid near a plane. Equation

(3.13) describes how the components are related in describing the

film thickness. In figure 4.2 it is assumed that Y is held con-

stant near the midplane _,r the contact.

Substituting c ,m (4.19) into equation (3.13) while at the

sam_ time making this equation dimensionless as in equation (4.10)

gives

o 2 a2(Y, _ _)2 w(X. y,)
H = h +-kl-(_(-*-----m-)-- + ............. + (4 20)o _ 2R R R "

2R" x y xx

where }1 is a constant that is initially estimated
O

In chapter 3 the elastic deformation (w in eq. (4.20)) of an

equivalent ellipsoidal sol_d nt, ar .3 plane in contact and subjected to

a tlertzian stress distribution has been evaluat.,! numerically.

Therefore, by using fiy, ure 4.1 and the results ,_f chapter 3, the

elastic deformation can be written as

2_,xc (n_n) x¢.

_k'-f(X*'Y*) = _"_ E Pi,l'Bm,n (4.21)
j=l,2, i=l ,'_. .. _1. , ,

where

u constant used to det,'rmine l_'ngth of mltlet region
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c number of equal divisions in semimajor axis (in fig. 4.1, c"5)

d number of equal divisions in semiminor axis (in fig. 4.1, d = 5)

= Ik-il+ 1

and

n= IZ- jl + i

rk_ 1 1 2 17d)/" ]l" [_
D = b (X* + _d)ln + _c) + _k2/Y* + _c) + IX* +b(.

+ a(y, +_c)ln + _d) + _k2(y* + _c) 2 + (X* + 5

in [:-(7

in[_,_ - _l + _k2(y,- _c)2 + IX, _ 1_]

+ a(Y*- 1) [(X* + 1) + _k2(y,- 1)2 + (X* + _)2J (4.22)

Equation (4.23) points out more explicitly the meaning of equation

(4.21) while making use of figure 4.1. The elastic deformation at

the center of the rectangular area w9, 5 (fig. 4.1) caused by the

pressure on the various rectangular areas in m around the contact

ellipse can be written as

PI,I D9,5 + P2,1 D8,5 + " " + P35,1 D27,5

2 PI,2 D9,4 + P D,, + . + P2,2 ,.4 35,2 D27,4 (4.23)
W9,5 = 7

.+ PI,20D9,16 + P2,20Ds,[6 + . + P35,20D27,]6j

I 4.5 Phi (_) Solution

Having defined the d_nslty, viscosIty, and film thickness, we

can return to the problem of solving the Reynolds equatlon. It is

, j_ , - I I I ;-._-Tv :: , -- • ..... ,, , , II iii Iiiiiii i ,, , |
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well known (e.g., Whomes (1966)) that the dimensionless pressure (P)

of the R,ynolds equation plotted as a function of X* exhibits a

very localized pressure field, giving high values of 3P/_X* and

:)2p/3x*2. Such a condition with high gradients is not welcomed when

performing a numerical analysis by means of relaxation methods. In

order to produce a much gentler curve, a parameter (_) is introduced,

where
i

3/2
= PH (4.24)

The pressure (P) is small at large values of film thickness (H) and

conversely. This substitution also has the advantage of eliminating

all terms containing derivatlves of products of II and P or II

and _. Therefor-e, by using equation (4.24), equation (4.11) can be

written as

2 k2 2
/ b'_:_(:,-H)

12u_R-J---_-,-

Expanding this equation yields

LIx*v _ ,ty*/j :)X*)k2 _Y* \-,i 2"L 'x-*,,]

) (v* {i Ill " = 1.211 (4 75)k" :_-Y-*/J Rx_ :_X* "

4.6 Finit£ J)iffererj3-y " _R.92r3,s_ent_{__ti.o_n

1'tie finite difference method will b_' used to develop the various

i terms in equation (4.25). Figure 4.3 shows tt_e mesh to be used as

relatt,d to the dimensionless coordinates X* and Y_. Eqp,atlon

(4.25) must be written for the point (i,}) in figure 4._ by substitu-

ting, for the derivatives, expressions that involve v;lltles of $,

tl, ,', m_d r/ at tt_e surrmmdim', points.

At the three points X*. , X* , and X*t-[,I i,i l+l,i' a tm_ctitm of

X * SI, IcN /.IS ', can be r,,prt,s_,ntt'd bv ,i p,trilbo|;l, whel'p
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¢,= A(X*) 2 + BX* + C (4.26)

The parabola and corresponding points are shown in figure 4.4. The

expressions for _i-l,j' _i,j' and _i+l,j can be written directly

from equation (4.26) as

= )2 + BX__I + C (4.27)_i-l,j A(X_-I,j ,J

_i,j = A(X_,j )2 + BX;,j + C (4.28)

, )2 + , + C (4.29) '
_i+l,j = A (Xi+l,j BXi+I,j

From figure 4.4 the following equations can be written:

, + 1
X* j = Xi_l, j

x* : x* + _2
i+l,j l-l,.j d

Substituting these expressions into equations (4.28) and (4.29) gives

2

_i,j = A(<*i_l,j + i) + B(X;_ l'j + 1) + C (4.30)

* + + C (4.31)
_l+l,j = A[Xi-l,j + + B

Therefore, given equations (4.27), (4.30), and (4.31), it is possible

to solve for A, B, and C to give

d 2
- 2_ + ) (4.32)

d - 3_i_i, - '_' ) - 2AX* (4.33)B = _ (4_$[,j j _i+1,j i-l,j

C = #i-l,1 - BX_-l,i - A(X_-I,j )2 (4.34)

The following derivatives can be written by using equations (4.32),

(4.33), and (4.34):

J t_.

_:__-_lj,_ = 2AXe_ + B :=B' = 0.5 d(4,_i, j - 3'Vi_l,.j - '"1+1 ])
IXi_l,] 1,j

(4._5)

. +I +.+ .,+
_"I,I i -I,1 d + B = 2AX _i,] _I- d

(4.3_)
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_'_i2J--(*.5 d(,_,i+l,j -_i_l,j ) (4.37)

-- = + B = 2A X l,j
_Xi+l,j 2AXi+I,j _ + + B =

0.5 d(3,_i+l,j - 4._i,.j + _l_l,j ) (4.38)

9 9

___i-l_j .... _ = '_ _i+l,j 2A = d2(u)i+l ',_ _3X.,2 _X.2 ; j - 2_i, j + ¢i_l,j)

'_Xi-_l,j 1,j 'i+l,j (4.39)
]

Having dev_loped these basic quations with tiledummy variable

(_), we can now proceed to develop the various terms in equation

(4.25) by using tilefinite difference format developed in this sec-

tion. Tile following equation is written for the point l,j:

:_X*\_ ;)X*/ = 0.5 d ::l+!_,/
Lr'i+l,j--ti+l,] \:_X*/i+l,}

..... (,H ]
_ "i-l,.j ¢ti_l,i _i:,**/ (4.4o

rti-l,] i-l,j J
From equations (4.38) grad (4.35) the following equations cau be

wri tt_m:

,,_,7 = 0.5 d(_lli+ 1 - 4tt + II ) (4.41
' i4l,_j , i, j i--l, ]

j_l_ : 0.5 d(-Hi+ 1 + 4Hi j - Hti_l, j ) (4.42'X*]i-1, i ' '

Suh,,;titut ng equatious (4.41) /_nd 4.42) into (4.4¢/) gives

I ,,l,a,,,) ,,.,X* _7 ill ,X* :: 0.25 d" [ti+l i (HII+I } - 4tti } + lti-I i )
• [ 'i-, 1, i ....

+ _It (H - 4tt + Ill (',.4'_
"i-l,i i-I,] i+l,i l,l i-l,}

i'hu:;, tht. tcll()wiu_, vqu.it i_,n'i ,'an b_. ,!irectlv writtt.u:

1976020483-055



37 i

d2rpi+l_j_i _ 4_i

-o:,. ,]4-_ - 4q_ + 3_i_1 (4.44) ,.
_i-1 j (*i+l,j i,j ,j !' i

(pH) = 0.5 d(Pi+!,jHi+l,j -Pi_i,jHi_l,j) (4.45)_X*

The derivatives with respect to Y* can be vbtained directly by sub-

stituting c for d, the subscript i,j-i and i-l,j, and the sub-
i

script i,j+l for i+l,j.

_y_(_ H1'2 7H,) = 0.25 L_i,j+I H_i,j+l (3Hi,j+I-4Hi,j+Hi,j-1)

-I

+ _ _i,j-i (Hi,j+l - 4Hi,j + 3Hi,j-l)J

(4.46)

_i, j-i

-- ,]+ _i (*i,j+l - 4*i,j + 3*i,j-1 (4.47)
ni,j-i

Substituting equations (4.43) to (4.47) into equation (4.25) while

collecting terms gives

A. +- +- + +D" -Ui -_ = 01,j+i+l,j Bi,j_i,j-i Ci,j i-l,j 1,j_i,j+l ,j_i,j i,j

(4.48)

where

P
. = = _4..-,_J

n

Ai,j = 3°i+l,j + Pi-l,j (4.50)

," c _2

gi,j -- [d-/] (_'i,j+l + 3_i,j-1) (4.51)

Ci,j = Pi+l,j + 3_il-l,j (4.52)
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2

Di,j = (_k)(3_i,j_l + _i,j_l) (4.53)

_. = 4 + ) + 4 (Pi, + _1,j (_i+l,j _i-l,j j+l i,j-1 )

+ _ 3/-----_;_i+l j _iz-_+l j (3Hi+l,j - 4Ui,j + Hi-l,j)
2H. . ' '

l,J

+ _i-l,j H_i-i J, (Hi+l,J _ 4Hi,j + 3Hi-l,J) + (_)2

x I;li,j+l 4HI.,j+I (3Hi,j+ 1 - 4Hi, j + Hi,j_l)

+ Pi,j_l 4q,j_l (Hi,j+l- 4Hi,j + 3Hi,j_l)]} (4.54)

24Ub -

- (Pi+l,jHi+l,j - Pi_l,jHi_l,j) (4.55)_Mi,j dR h3./2
X l,J

4.7 Nodal Structure

The nodal structure used in obtaining most of the results is

shown in figure 4.5. This nodal structure was arrived at after much

exploration in which the number of nodes in the semimajor and semi-

minor axes, as well as the distance from the center of the contact

to the edges of the computing zone, was varied. The ,_dal structure

shown in figure 4.5 was considered to be suitable when the minimum

film thickness did not change when either additional nodes were placed

in the semimajor and semiminor axes or the distance from the center

of the contact to the edges of the cornF ring zone was extended.

From figure 4.5 the following can be written:

m= 4

n = 1.15

_ = 1.6 (4.56)

I c = 5

d = 13
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These values used to define the nodal structure were used for most of

the evaluations. One exception was for high-speed cases when the ii

constant used to determine inlet length (m) had to be extended from i

ii

4 to 6, with the other values being held constant, i

4.8 Boundary Conditions

The boundary conditions are the following: _i

(i) At the edges of the rectangular computation zone (fig. 4.5)

the pressure is zero, which therefore implies that _ is also zero.

Specifically, this means that along the bottom of figure 4.5,

#i,l = O; along the left side, _l,j = O; along the top, _i,16 = O;

and along the right side, _67,j = 0.

(2) At the cavitation boundary,

_P _P
P = - - 0

_X* _Y*

This condition is commonly known as the Reynolds condition and wi]l

be satisfied by simply resetting _i,j to zero whenever it occurs

as a negative value.

4.9 Initial Conditions

Outside the Hertzian contact ellipse the pressure is initially

assumed to be zero, and therefore _ is also equal to zero. That

is, $ = 0 when

2 2
(X* - m) + (Y* - _.) _E 1

Inside the Hertzian contact ellipse the pressure is initially as-

sumed to be HerLzian; that is,

2_abE' - (X* - m) 2 _ (y, _ _)2 (4.57)

or

3FI13/2= 2_abE' 1 - (X* - m) 2 - (Y* - Z)2 (4.58)

I
when

2 o
(X* - m) + (¥* - _)_ < i
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4.10 Relaxation Method

I If the subscript n is the iterant and _i,j is the particularsolution to be found, the relaxation method _own as the Gauss-

Seidel method can be expressed as

_i,j,_I = ¢i,j,n

-E -
_Xl '1_j j_i+l,j,n 1,j_i,j-lzn+l 1,]_i-l,j,n+l-Di,j¢i,j_,nLi,j

+ _i,j,n | (4.59) i! !

where _ is an overrelaxation factor that is initially set to 1.6. !

Therefore, equation (4.59) is used, starting with node (2,2) and then

continuing with (3.2), ., until (M,2) followed by

(2,3), (3,3), . ., (M,3), and ending with (2,N), (3,N) .... (M,N),

where

M = (n + m)d- 1 I (4.60)SN = 2_c - I

The relaxation procedure described by equation (4.59) is con-

tinued until

N M

_ '¢i'J n+l - ¢i'j'nl

--- ' <0.i

¢i,j,n+l

j=2,3,.., i=2,3,...

4.11 Pressure Loo_

The relaxation method provides values of ¢i,j for every point

within the mesh. Having determined _i,j, we can write the dimen-

sionless pressure as

Pi,j = ¢i,j(Hi,j )-3/2 (4.61)

With these new values of the dimensionless pressure, new values of

the dimensionless viscosity, density, and film thickness can be

i _ evaluated. Thus, the coefficients of equation (4.59)
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(Ai ,j' --Bi,j, ., Li,j) should also change. Accordingly, it is

necessary to reenter the relaxation loop. This process is con-

tinued until the following inequality is satisfied:

N M ip_,n+ I [

Pi,j ,n+l

j=2,3,.., i=2,3,...
i

4.12 Normal Applied Load

,q
The constant H in equation (4.20) was initially estimated.

O

The next task is then to find the correct value for H In order to
O"

do this, the integrated normal applied load must be evaluated, where

= E'ab P dY dX (4.62)

By applying Simpson's rule, this double integral can be rewritten as
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_n- 1

2Zcd Pij (4.64)

j=2,3 ....
i=2,3,...

Both equations (4.63) and (4.64) were progra_ed to serve as a check

on one another.

hen the current values of H and F (eq. (4.63)), as well as
O

the initial nor_l applied load (F) are kno_, a new estimate for

(Ho) can be expressed as

0.13 J

With a new value for H the film thickness (eq. (4.20)) is recal-o

culated, and reentry into the relaxation process is required. This

process is continued until the following convergence is satisfied:

< o.ooo5
F

Once this convergence criterion has been satisfied, the pressure and

film thickness in and around a point contact are established.

4.13 Flow Charts

Figures 4.6 and 4.7 are flow charts for the numerical solution

on the digital computer of the equations developed in the analysis.

Figure 4.6 is the flow chart of tile main program. There are essen-

tially three loops within the main program: In the relaxation loop,

qi,j,n+1 is generated. In the pressure loop, the new values of

'_i,j,n+] of the relaxation loop result in new values of pressure

Pi,j,n+l' which in turn result in new values of film thickness lt[,j,

new values of viscosity qi,j' and new values of density Pi,j" The

final loop is the normal-load loop, which ensures that the integrated

nor_l applied load agrees with the initially specified value.

Figure 4.7 is the flow chart of tile subroutine SUB6. llere it

can be seen that a number of calculations occur only once and need

not be repeated on reentering this subroutine. With a new pressure
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distribution the elastic deformation is recalculated and this sub-

routine is left with a new film thickness and, therefore, a new

[
_i,j,n+i" The FORTRAN listings of the main and SUB6 computer pro-

grams are given in the appendix. The FORTRAN listings of the EHL

point-contact analysis were programmed on the NASA Lewis Research

Center's Sperry Univac 1100/42 computer, which has 131 K primary

memory and 262 K extended memory.

4.14 Concluding Remarks

In this chapter a procedure for the numerical solution of the

complete, isothermal, elastohydrodynamic lubrication problem for

point contacts is given. This procedure calls for the simultaneous

solution of the elasticity and Reynolds equations. In the elasticity

analysis the contact zone was divided into equal rectangular areas.

It was assumed that a uniform pressure was applied over each area.

In the numerical analysis of the Reynolds equation the parameter

= PH 372, where P is the dimensionless pressure and H the di-

mensionless film thickness, was introduced in order to help the re-

laxation process. The nodal structure, boundary conditions, and

_nitial conditions were given and a Gauss-Seidel relaxation method

was used. The computer program has three major loops: the -elaxation

loop, the pressure loop, and the normal-load loop. The last loop re-

quires the integrated load to be in agreement with the input load

withi;_ some tolerance. Upon the convergence of all three loops the

pressure and film thickness in and around a point contact are estab-

lished.
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CHAPTER 5

FULLY FLOODED RESULTS

The most important practical aspect of the elastohydrodynamic

,i
lubrication (EHL) point-contact theory developed in chapter 4 is j_

I
the determination of the minimum film thickness within the contact.

• !

That is, maintaining a fluid film of adequate magnitude is extremely i

impoltant to the operation of some machine elements. In the present i

chapter the influence of contact geometry as expressed in the el-

lipticity parameter and the dimensionless speed, load, and material

parameters on minimum film thickness is investigated for a conjunc-

tion fully immersed in lubricant (i.e., fully flooded). In the nu-

merical work the ellipticity parameter is varied from i (a ball-on-

plate configuration) to 8 (a configuration approaching a llne

contact). The dimensionless speed and load parameters are varied

over ranges of about two and one orders of magnitude, respectively.

Conditions equivalent to using solid materials of bronze, steel, and

silicon nitride and lubricants of paraffinic and naphthenic mineral

oils are considered in obtaining the exponent on the dimensionless

material parameter. Thirty-four different cases are used in obtain-

ing the fully flooded minimum-film-thickness formula. A central-

film-thickness formula is also developed.

In this chapter, contour plots are sbown that indicate in detail

the pressure spike and the two side lobes in which the minimum film

thickness occurs. These theoretical solutions for film thickness

have all the essential features of previously reported experimental

observations based on optical Interferometry.

i
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5.1 Dimensionless Grouping _,

The variables resulting from the isothermal EHL point-contact

theory developed in chapter 4 are

Rx effective radius in x-directlon, mm

Ry effective radius in y-direction, mm

h film thickness, mm

E' effective elastic modulus, N/mm 2

Ply,as asymptotic isoviscous pressure obtained from Roelands (1966), I

N/mm 2

u surface velocity in x-direction, mm/sec

n0 atmospheric viscosity, N •sec/mm 2

Z viscosity pressure index, a dimensionless constant

F normal applied force, N

_,_ constants used to define density of fluid, _2/N

It has been found by Dowson and HiBginson (1966) that density has

little effect on minimum fiJm thickness for line-contact situations;

therefore, one may assume the same is true for point-contact situa-

tions. Even though the compressibility effect is still considered

in the EHL theory developed in chapter 4, the constants used to de-

fine the fluid in the density equation wii_llnot be used in the

minimum-film-thickness formulation. Therefore, the ii variables men-

tioned above were reduced to nine, _ and B being eliminated. From

the nine variables the following five dimensionless groupings can be

written:

(i) Dimensionless film thickness

h
H = --- (5.1)

R

I x

where

1 i 1 i
...... + ---- (5.2) .
Rx rAx rBx

The radii of curvature in equation (5.2) are shown in figure 2.1.

t ,
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(2) Dimensionless load parameter

F

I W - (5.3)E'R 2!

x

where

E' = 2 (5.4)

(i
i

(3) Dimensionless speed parameter

n0u

U = E'R (5.5)
x

where

(u A + u B)
u = 2 (5.6)

(4) Dimensionless material parameter

E'
C - (5.7)

Piv,as

where Piv,as is the asymptotic isoviscous pressure obtained from

Roelands (1966). The asymptotic isoviscous pressure can be approx-

imated by the inverse of the pressure-viscosity coefficient

(Piv,as _ l/a).

(5) Ellipticity parameter

a

k = U (5.S)

where

a semimajor axis of contact ellipse

b semiminor axis of contact ellipse

The ellipticlty parameter is determined entirely from the definlt|on

rBx_ rAy,
and and the deriva-

of the radii of curvature (tAx, rBy),

! tion can be found in chapter 2.
L

The dimensionless film thickness can be written as

H-- f(k,U,W,G) (5.9)

b.
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The most important practical aspect of the EHL point-contact theory

developed in chapter 4 is the determination of the minimum film

thickness within the conjunction. Therefore, in the fully floode'd

results to be presented in this chapter the dimensionless parameters

(k, U, W, and G) will be varied and the effect upon minimum film

thickness will be studied.

5.2 Effect of Ellipticity Parameter

The ellipticity parameter (k) is a function of the radii of

, and The radii
curvature of the solids only (rAx , rBx, ray rBy).

of curvature in the x-direction for both solids A and B are used

in defining the dimensionless speed and load parameters. Therefore,

only the radius of curvature of solid B in the y-direction will

be changed in varying the ellipticity parameter from 1 (a ball-on-

plate configuration) to 8 (a configuration approaching a line con-

tact). In doing this the dimensionless speed (U), load (W), and

material (G) parameters were held constant at the following values:

U = 0.168)x10 -1l

W = 0"ilO6xlO-6 t (5.10)(; = 4522

Care was taken to ensure that the highest eIIipticity parameter

(k = 8) was in the elastic region. The rpproach used was to relate

the op_.'ating conditions for this near-line-contact situation to the

<lastic region defined in figure 5.i, which was obtaint,,,t from Dowson

and Whitaker (1965). From this figure _he elastic, intermediate,

and rigid regions are defined for G = 5000 (which is very close to

the value of (; in eq. (5.10)) and for various rallies of dimension-

less speed (U) and dimensionless load (WI)), The dimensionless speed

(U) tn Dowson and Whitaker (1965) is exactly th;_t used in this thesis.

The dimensionless load (_4D) used in figtlre 5.1 differs frtml that used

in th_s thesis, ;lnd ;1 tie betweell tilt'tWO must bt' devel_ped. The

{
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dimensionless load parameter as defined by Dowson and Whitaker (1965)

is

WD = 2'-f (5.11)
X

where

= Force
Unit length

Therefore, in relating this to an e]liptlcal contact in which tile el-

lipticity parameter (k) is large compared with unity, a dimensionless

load parameter can be written as

F

WD = 2-a-F,-'-R- (5.12)
x

For this equation and k = 8 the location of U and WD is shown

hy a circular symbol in figure 5.1. As can be seen, it lles within

the elastic region. Thus, for the conditions given in equation

(5.10) and for a ellipticity parameter (k) of 8, the conjunction is

truly elastohydrodynamic. For k less than 8 the results move

further into the elastic region.

Table 5.1 gives i0 values of k and the corresponding minimum

film thickness (llmin) as obtained from the EHL point-rontact theory

developed in chapter 4. Having these I0 pairs of data, the object

is to determine an equation that describes how the elllpticity pa-

rameter affects the minimum film thickness. The general form of this

equation can be written as

|imin _ "

A least-square exponential curve fit to tile 10 pairs of dat.l ?hints

i

was used in obtaining wllues lot A and B In _.quation (5.10.

Besides a lea_t-squ4re fit a c,_ultlci,.,nt of det_,rmlnatlon (r 2) Is
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obtained. The value of r2 reflects the fit of rile data to the re-

suiting equation: I being a perfect fit, and zero the worst pos-

sible fit. The minimum film thickness for a line contat_t (Hmin,i,)

used in equation (5.13) was determi_,ed by finding the t1 that
min,l.

gives a cueffic[ent of determin_tlon closest to i. The line-contact

minimum film thickness was thus deduced from the preseut set of

results for the limlting case in which the elllpticity parameter (k)
l

approached infinity. This value of ilmin,L turned out to be

7.082xlo -6 with a corresponding coefficient of determination of

0.9990, which is an excellent fit. Furthermore, the values of A

and B in equation (5.13) as obtained from the least-square fit are

Q,

A - 0.9966 ,_, l.:)O (5.14)

= -0.6752 _'_-0.68 (5.15)

From equations (5.13), (5.14), and (_,.I'_) the following preportlon-

ality can be written, which shows the effect of elliptlcity parameter

on minimum film thickness:

-0.68 k) (5.1_)}train " (1 - e

where ttmi n = hmin/kx, predicted by the relationship that giv_,s the

best least-square fit to the numerical solutions. It is most sig-

nificant that A t-urns out to be 0.9996, or approximately l.I)O,

since as k , O, tlmin ' O. "l'her_,f_,r,., ¢,ven though tilt' smallest

vit[ut, of k ust'd in obtai_in_. _'quat i_,n (5.16) wa_; un|tv, it wotlld

seem th;It t:quation (5.[6) could b_' applied to smaller villuus sillce

in the [lmitiu_; case (k " !)), _,qu;ttiou (5.11_) satisfies t}u' physical

sltu/ttlon. For tilt' (}th_.[ t'xt l'eltlt' t}_ ].lr_,,t, k, ,; 1 im.-cont;lct sit,el-

Lion is approached and ttl,, ,l}.,,r_,cm,,ut with ,.xist[n;, r,mt, lts i>; ,'tF,,ll'l

good. From Dows_)n and _ti_,,,[ns_m (lqhf_) the. I _.np-cL)ntact nlilliP, lllm

t ilf_l thJckflt,,qs for th_. diln,.,mi_,nl,.:;:_ par'.lmet_,rs _,,ivt,iI ill equation

-6 -_
(5.1()) is 7.7J()xl() (:,,mpar,, th[_ with 7.(182x1(I tr,m th,. pre_vnt

re,_;ult.'_. l'tlt, diI:,.r_,m't. _,_ 'i l,vrc,,tt ,'_,uld w,,l] b,. th,, r,,sult ,_t
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For an ellipticity parameter (k) of 8, the maximum pressure is

near the center of the contact (fig. 5.2(a)); and even though the

conditions are in the elastic region, no pressure spike occurs. As

the ellipticity parameter is decreased (going from fig. 5.2(a) to

5.5(a)) the maximum pressure moves to the right (i.e., downstream

of the center of the Hertzian conjunction) and increases in value.

In decreasing the ellipticity parameter even more (going from fig.

5.6(a) to 5.10(a)) the label of the pressure spike goes from A

to C although the numerical values of the contours are different

in each case. The pressure gradient is much larger at the exit end

of the conjunction than at the inlet region. The pressure distribu-

tion is seen even more dramatically in figures 5.2(c), 5.3(c), ..,

5.10(c), corresponding to ellipticity parameters of 8, 6, • ., 1.25.

The three-dimensional representation of pressure shows the details

of the pressure spike more clearly.

Figures 5.2(b), 5.3(b), ., 5.10(b) show contour plots of

film thickness when the ellipticity parameter (k) is 8, 6, 4, 3, 2.5,

2, 1.75, 1.5_ and 1.25, respectively. For k = 8 the minimum film

thickness is in a small area directly behind the axial center of the

contact As k is decreased the minimum film area moves away from

the axial center of the contact. For k = 1.25, twe minimum-film-

thickness areas occur at the sides nearer the edge of the Hertzian

qircle. These results, showing the "side lobes" in which minimum-

film-thickness areas occur, produce all the essential features of

previously reported experimental observations based upon optical in-

terferometry.

Figures 5.11(a) and (b) show the variation of pressure and film

thickness, respectively, in the X-direction close to the midplane
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of the contact for three values of the ellipticity parameter. As

has been true for all the ellipticity parameter results presented_

the values of the dimensionless speed, load, and material parameters

were held fixed as per equation (5.10). In figure 5.11(a) we find

that for k = 6 no spike occurs, but this well-known feature of

theoretical solutions to the _lastohydrodynamic problem is evident

for k = 2.5 and k = 1.25.

In figure 5.11(b) for k = 1.25 the central region is not

parallel with the X-axis. The reason is probably that compressi-

bility effects are considered in the theory developed in chapter 4.

That is, when compressibility is considered, the film thickness in

the center is reduced by the amount that the fluid volume decreases

at high pressure.

5.3 Influence of Speed

' By changing only the surface velocity in the x-direction (u)

the dimensionless speed parameter (U) (eq. (5.5)) changes, but the

other dimensionless parameters (k, W, and G) remain constant. The

values _t which these dimensionless parameters were held constant in

the calculations are

k = 6

W = 0"7371xi0-6 I (5.18)C = 4522

Table 5.2 gives the dimensionless speed parameter (U) and the

corresponding minimum film thickness (Hmi n) as obtained from the EHL

point-contact theory developed in chapter 4. There are 15 different

values of the dimensionless speed parameter covering nearly two

orders of magnitude. Having these 15 pairs of data, the objective

1 is to determine an equation that describes how the dimensionless
1

speed affects the minimum film thickness. The general form of this
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equation can be written as

Hml n = IUK (5.19)

By applying a least-square power fit to the 15 pairs of data

{(Ui, Hmin,i), i = i, ., 15}, the values of I and K were

fouud to be

I = 560.18 (5.20)

K = 0.67542 _ 0.68 (5.21) '

The coefficient of determination (r2) for these results was excellent

at 0.9998. Substituting equations (5.20) and (5.21) into equation

(5.19) gives the values of Hml n shown in table 5.2. The percentage

difference (DI) between the minimum film thickness obtained from the

EHL point-contact theory (Hmin) and the minimum film tbi_k_ _b-

rained from the least-squares fit (Hmin) is expressed in equation

(5.17) and given in table 5.2. Note that the variation of D isl

less than ±2 percent.

From equations (5.21) and (5.19) the effect of dimensionless

! speed on dimensionless minimum film thickness can be written as

U0.68 (5.22_

Figures 5.12 to 5.26 give contour plots of pressure and film

t_ickness for dimensionless speed parameters ranging from 5.050xi0 -II

to 8.416xi0 -13. The other dimensionless parameters (k, W, and G)

were held fixed as described in equation (5.18). As was true for

the ellipticity results, contour plots of pressure and film thickness

are designated a and b, respectively, and three-dimensional repre-

sentations of pressure are designated c.

In figure 5.12(a) the maximum-pressure area is near the center

of the contact. As the dimensionless speed is decreased to and in-

cluding U = 5.892xi0 -12 (fig. 5.21(a)), the maximum-pressure area

moves downstream to the right. For dimensionless speeds greater" than

_ U = 5.892xi0 -12 the maxlmum-pressure area moves back toward the cen-
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ter of the contact. Note that the "spike" pressure exceeds the

Hertzian maximum pressure at U = 5.892xi0 -12, but at smaller speeds

I
(e.g., U = 4.208x10 -12) the Hertzian pressure is dominant. Also

note in these figures that the pressure in the inlet region is

higher at high speeds than aC low speeds.

In figure 5.12(b), a high-speed situation, two minimum-film-

thickness areas appear midway between the center of the contact and i

the Hertzian circle. As the speed decreases, the two minimum-film-

thickness areas reduce to one, which is located at the axial center

of the contact. With further reductions of speed the minimum-film-

thickness area still remains in the axial center but moves closer

to the Hertzian circle.

In figure 5.12(c) a three-dimensional representation of the

pressure for the highest speed case is shown. Here no pressure spike

occurs, and the pressure rises to a peak that was shown in figure

5.12(a) to be near the center of the contact. As the speed is re-

duced the pressure spike emerges, and the top of the pressure pro-

file becomes flatter. Once the pressure spike occurs, it moves

toward the exit of the conjunction as the speed decreases.

Figures 5.27(a) and (b) show the variation of pressure and film

thickness, respectively, on tile X-axis at the midplane of the con-

junction for three values of dimensionless speed parameter. In fig-

ure 5.27(a) the dashed line corresponds to the Hertzian pressure dis-

tribution. Figure 5.27(a) shows that the pressure in the inlet region

is higher for the high-speed (U = 5.050xi0 -II) profile. For

U = 0.8416xi0 -II and U = 0.08416xi0 -II, the pressure spike orig-

inates very near to the Hertzian pressure, and as the speed in-

I rreases the pressure spike mo_es upstream.

The typical elastohydrodynamic Film shape with an essentially

parallel section in the central region is shown in figure 5.27(b).

1976020483-073



55

Also there is a considerable change in film thickness as the di-

mensionless speed is changed, as indicated by equation (5.22). This

illustrates most clearly the dominant effect of the dimensionless

speed parameter (U) upon the minimum film thickness in elastohydro-

dynamic contacts.

5.4 Influence of Load

By changing only the normal applied load (F) in equation (5.3)

the dimensionless load parameter (W) changes while the remaining di-

• mensionless parameters (k, U, and G) remain constant. The values

at which these parameters were held constant are

k = 6

U = 0"1683xi0-ii I (5.23)C = 4522

Table 5.3 gives the dimensionless load parameter (W) and the

corresponding minimum film thickness (Hmin) as obtained from the EHL

point-contact theory developed in chapter 4. There are eight differ-

ent values of the dimensionless load parameter, covering over an

order of magnitude. Having these eight pairs of data, the objective

is to determine an equation that describes how the dimensionless

load affects the minimum film thickness. The general form of this

equation can be written as

H . = QWL (5.24)mln

By applying a least-square power fit to the eight pairs of data

{(Wi, Hmin,i), i = i, ., 8}, the values of Q and L were

found to be

Q = 2.1592xl0 -6 (5.25)

L = -0.072924 i_ -0.073 (5.26)

The coefficient of determination (r2) for these results was 0.9260,

which was good, but was the lowest obtained in deriving the minimum-

i film-thickness equation (5.33). Substituting equations (5.25) and
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(5.26) into equation (5.24) gives the values of H shown in
rain

table 5.3. The percentage difference (DI) between the mlnimum

film thickness obtained from the EHL point-contact theory (Hmin)

and the minimum film thickness from the least-square-fit equation

(Hmi n) is e_-pressed in equation (5.17) and given in table 5.3. In

table 5.3 the variation of D 1 is within ±3 percent at all times.

From equations (_.24) and (5.26) the effect of load on minimum

film thickness can be written as

W-0. 073
Hmin (5.27)

Figures 5.28 to 5.35 give contour plots of pressure and film

thickness for dimensionless loads ranging from 0.1106x10 -6 to

1.290xi0 -6. The other dimensionless parameters (k, U, and G) were

held fixed as described in the relationship (5.23). Once again, in

parts (a) of these figures, contour plots of pressure are given; in

parts (b), film thickness contours are presented; and in parts (c),

three-dimensional representations of pressure are given.

In figure 5.28(a) the maximum pressure occurs directly behind

the center of the contact, with no pressure spike occurring. As the

load is increased the pressure spike emerges. With further increases

of load the pressure spike moves toward the exit of the conjunction.

These results can be more clearly seen in the three-dimensional

representation given in ;)arts (c) of figures 5.28 to 5.35.

In figure 5.28(b), the low-load case, the minimum film thick-

ness occurs directly behind the center of the contact. As the load

is increased the minimum-film-thickness area still remains in the

axial center of tbe contact but closer t¢ the Hertzian circle. With

further increases of load, two minimum-f|im-thickness areas appear

equidistance from the axial center and closer to the H_rtzian circle.

In figure 5.35(b), the highest load case considered, the minimum
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film thickness is off to the sides in two areas close to the Hertzian

circle.

-- ii
The variation of pressure and film thickness in the X-

direction along a line close to the midplane of the conjunction is

shown in figure 5.36 for three values of the dimensionless load pa-

rameter. The values of the dimensionless speed, material, and el-

lipticity parameters were held fixed as described by equation (5.23)

for all computations at various loads. In figure 5.36(a) note that

as the dimensionless load is increased the inlet pressure becomes

smaller. For the highest load case shown in figure 5.36(b), film

thickness rises between the central region and the outlet restriction

in the same manner as seen in figure 5.11(b). Again this is attrib-

uted to compressibility effects of the fluid. Also note that at a

load of W = 0.5528xi0 -6 the film thickness is slightly smaller than

at a load of W = 1.106x10 -6. The reason is that at the lower load

the minimum film thickness is closer to the axial center of the con-

tact than at the higher load. As was pointed out in discussing fig-

ures 5.18(b) to 5.35(b), the location of the minimum-film-thickness

region changes as the dimensionless load is changed.

5.5 Effect of Material Properties
I

Contrary to what was found in the previous three sections, the

effect of the dimensionless material parameter on minimum film thick-

ness is not a simple matter. As can be seen from equations (5.3),

(5.5), and (5.7), when either the material of the solids (as ex-

pressed in E') or the lubricant (as expressed in qo and Piv,as )

is varied, not only does the material parameter (G) change, but so

do the dimensionless speed (U) and load (W) parameters. Only the

be held fixed. For all the resultsellipticity parameter can pre-

sented in this section the ellipticity parameter is held fixed at a

value of 6
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Table 5.4 gives the four material-parameter results. The gen-

eral form showing how the minimum film thickness is a function of the

L
dimensionless material parameter is given as

= TGV (5.28)

where

H

= min (5.29)
(I - e-0"68 k)U0"68w-O'073

Note in equation (5.29) that the exponents are rounded off to two

• significant figures so that any error could be absorbed in T given

in equation (5.28). By applying a least-square power fit to the

four pairs of data, the values of T and V were found to be

T = 3.6891 (5.30)

V = 0.48669 % 0.49 (5.31)

_ The coefficient of determination for these results was 0.9980, which

_ is excellent. Substituting equations (5.30) and (5.31) into equa-

tion (5.28) gives the values of Hmin shown in table 5.4. The per-
i,

: centage difference (DI) shown in table 5.4 varies by only 2 percent

at all times. Therefore, from equations (5.28) and (5.31) the effect

of the dimensionless material parameter on the dimensionless film

thickness can be written as

_ G0"49
Hmi n (5.32)

5.6 Minimum-Film-Thickness Formula

The proportionality expressions (5.16), (5.22), (5.27), and

(5.32) establish how the minimum film thickness varies with the el-

lipticity, speed, load, and material parameters, respectively. This

enables a composite mlnimum-film-thlckness formula for a fully flood-

ed_ isothermal_ elastohydrodynamic point contact to be written as

}{min 3.63 uO'68GO'49w-O'073(I -0.68 k= - e _ (5.33)

In equation (5.33) tile constant 3.63 is different from that in equa-
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tlon (5.30) to account for rounding off the material-parameter ex-

ponent.

I Table 5.5 gives the 34 different cases used in obtaining equa-

tion (5.33). In this table, Hmln corresponds to the minimum film

thickness obtained from the EHL point-contact theory developed in

chapter 4, and Hmin is the minimum film thickness obtained from

equation (5.33). The percentage difference between these two values

is expressed by D1, which is defined in equation (5.17). In ta-

ble 5.5 the values of DI are within ±5 percent.

It is sometimes more convenient to express the side-leakage

factor in equation (5.33) in terms of the radius of curvature ratio

(Ky/Rx) instead of the ellipticity parameter (k) through the follow-

ing relationship:

/R _0.64

k = 1.031_ # (5.34)

where

!: i i_+_- (5.35)
Ry rAy rBy

_i_i = 1 1+ --- (5.36)
Rx tAx rBx

A least-square power fit was used in obtaining equation (5.34). This

equation is valid for Ry/R x between I and 40. The coefficient of

determination associated with this power fit was 0.9997, which is

excellent.

Using equation (5.34) avoids the need to evaluate elliptic inte-

grals of the first _nd second kind in the determination of k. The

minimum film thickness can thus be derived directly from a knowledge

of the radii of curvature of the contacting bodies (rAx, rBx, rAy,

and rBy).

It is Interesting to compare the new point-contact, minimum-
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film-thickness formula (eq. (5.33)) with the corresponding equation

generated by Dowson (1968) for llne contacts

I (5.37)
Hmln,L = 2.65 "0"70G0"54W-0"I3

The powers of U, G, and W in equations (5.33) and (5.37) are quite

similar considering the different numerical procedures upon which

they are based. It is also worth noting that the power (W) in

equation (5.33) is extremely close to the value of -0.074 proposed
i

by Archard and Cowking (1966) in their study of point contacts.

5.7 Central-Film-Thickness Formula

There is inuerest in knowing the central film thickness, in

addition to the minimum film thickness, in elastohydrodynamic con-

tacts. In this section a central film thickness will be formulated.

The procedure used in obtaining the central film thickness is the

' same as that used in obtaining the minimum film thickness.

b_

Table 5.6 gives i0 values of the ellip_iclty parameter (k) and

the corresponding central film thickness (Hc) as obtained from the

EHL polnt-contact theory developed in chapter 4. The other dimen-

[ sionless parameters (U, W, and G) were held constant as defined by

the relationship (5.10). Having these i0 pairs of data, the objective

is to determine an equation that describes how the elllpticity param-

eter affects the central film thickness. The general form of this

equation can be written as

A least-square exponential curve fit to the i0 pairs of data points

H_ ' ' 'i' i = I, • • I0
c, i

was used in obtaining values of I and J in equation (5.38). The

value of H in equation (5 38) was found to be 8.69xi0 -6 and was 'Ic,L
i

determined by finding the value of H that gives a coefficient of
i_. c ,L i

RF_RODUCIBII,IqWOF Ti[F
ORIGINALPA(_._IS PO()R
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determination (r2) closest to I. The values of _ and J in equa-

tion (5.38) and the coefficient of determination (r2) as obtained •

from the least-square fit are

= 0.61178 _ 0.61 (5.39)

= -0.73377 _ -0.73 (5.40)

r = 0.96356 (5.41)

The value of the coefficient of determination (r2) in equation (5.41)

is not as good as that obtained for the elliptic_ty portion of the

. minimum-film-thickness formula, which was 0.9990. From equations

(5.38), (5.39), and (5.40) the following proportionality shows the

effect of the elliptlcity parameter on central film thickness:

-0.73 k_H = (i - 0.61 e j (5.42)
C

Substituting equations (5.39) and (5.40) into equation (5.38) gives

Hc, the dimensionless central film thickness obtained from the least-

square formulation. The values of H for the I0 values of ell|p-c

• ticity parameter (k) are given in table 5.6. The percentage differ-

ence between the central film thickness obtained from the EHL

point-contact theory (Hc) and the central film thickness obtained

from the least-square fit (Hc) is expressed as

D2 = c i00 (5.43)H
C ,

Note in table 5.6 that D 2 is within the range -ii% < D 2 < 4%.

This i-_ a larger range than that found for the minimum-film-thickness

formula, which was +3 percent.

Table 5.7 gives the dimensionless speed parameter (U) and the

corresponding central film thickness a:_ obtained from the EIIL point-

contact theory developed in chaFter 4. The values of tho other dl-

I menslonless parameters (k, W, and C) were held constant as defined

in equation (5.18). The general form of the equation that describes

how the dimensionless speed affects the central film thickness can
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i be written as

I Hc = _u_ (5.44)
I

By applying a least-square power fit to the 15 pairs of data

{(Ui, He,i), i _ I, ., 15}, the values of K and L wcre fouud

to be

= 537.73 (5.45)

= 0.66722 _ 0.67 (5.46)

The coefficient of determination (r2) for these results was 0.9990.

Substituting equations (5.45) and (5.46) into equation (5.44) gives

the values of Hc shown in table 5.7.
The percentage difference

(D2) between the central film thickness obtained from the EHL point-

contact theory (Hc) and the central film thickness obtained from the

least-square fit (He) is expressed in equation (5.43) and given in

table 5.7. In table 5.7, D2 is in the range -4% ! D2 < 6%. This

is to be compared to the range of Dl for the minimum film thick-

ness, which was ±2 percent.

From equations (5.44) and (5.46) the effect of dimensionless

speed on dimensionless central film thickness can be written as

H = U0"67 (5.47)
C

Table 5.8 gives the dlmenslon!ess load parameter (W) and the

corresponding central film thickness (Hc) as obtained from the EHI.

polnt-contacC theury developed in chapter 4. The values of the other

dimensionless parameters (k, U, and C) were held constant as defined

in equation (5.23). The general form of the equation that describes

how the dimensionless load affects the central film thickness can

be written as

C

By applying a least-square power fit to the eight pa|rs of darn

{(Wi, Hc,i), _ - I, . ., 8_, the values of M and N were found
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to be

= 2.8508xi0 -6 (5.49)

N = -0.067248 _ -0.067 (5.50)

The coefficient of determination (r2) for these results was 0.7303,

which is not as good a fit as the 0.9260 obtained for the load por-

tion of the mlnlmum-film-thlckness formula. Substituting equations

(5.49) and (5.50) into equation (5.48) gJves the values of Hc shown

in table 5.8. The percentage difference (D2) between the central film J

thickness obtained from the EHL point-contact theory (Hc) and the

central film thlckness obtained from the least-square fit (}Ic) is
ex-

pressed in equation (5.43) and given in table 5.8. In table 5.8, D 2

is +-5 percent.

From equations (5.48) and (5.50) the effect of dimensionless

load on dimensionless central film thickness can be written as

-0.067
H _ W (5.51)

C

Table 5.9 gives the four material parameters and the correspond-

ing central film thickness (He) as obtained from the EHI, point-contact

theory developed in chapter 4. The elliptlcity parameter (k) was

held fixed at 6 for the results shown in table 5.9. The general

form of the equatiuL, that describes how the dimensionless material

parameter (G) affects the central film thickness can be written as

ii = (5.52)

where

H
C

q-

(I - 0.61 t_-O'73 k)uO'67w-O'067

By applying a least-square power fit to the four pairs of data, the

values of T and 9 were found to be

2. ,595 53)

V = 0.5277b ;I_0.5) (5.54)

The coefficient of determlnatlon (r2) for these results was O.q804.
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Substituting equations (5.53) and (5.54) into equation (5.52) gi-es

I the values of Hc shown in table 5.8. The values of D2 as ex-
pressed in equation (5.43) are shown in table 5.9. In table 5.9, the

values of 02 are within the range of -4% < D2 _ 5%.

From equations (5.52) and (5.54) the effect of dimensionless

material p_*rameter on the dimensionless central film thickness can

be written as

h c°'53
c (5.55)

The proportionality expressions (5.42), (5.47), (5.51), and

(5.55) establish how the ce,ltral fllm thickness varies with the el-

llptlcity, speed, load, and material parameters, respectively. This

enables a composite central-film-thickness formula for a fully flooded

isothermal, elastohydrodynamic point contact to _e written as

• • -0.73 k)= 2.69 U0 67G0"53W-0 067(1 - 0.51 e (5.56)c

If it is desired, the slde-leakage factor _n equatioo (5.56) can be

expressed in terms of the radius-of-curvature ratio (Ry/Rx) instead

of the elllpticlty parameter (k) by using equation (%.34).

Comparing the central-f lira-thickness formula (5.56) with the

minimum-film-thickness f,_rmula (5.33) reveals a slight differ,;nce.

In equation (5.56) the load exponent is small but negatice, as It was

for the minlmum-fllm-thickaes:_ formula. This is in contrast wit,:

the recent numerical st.dy of Ranger et ai. (1975), who found a small

but positive exl)onent on the dimtnsiorlles_ load (W) In their formula-

tton of a central fttm thickness.

Table 5.10 glv_,s tilt' 1{, dlffertmt cases llsed to t)btaln e(llla-

tion (5.56). In this table, H corr_.spond to ttw ctntral filmc

thickness obtained from the I:ItL potut-.c.-_tact theory Jeveloped in

chapter 4, and h corre._ponds to the ct.ntr:|l film thickness ob.-c

rained from equation (5.5t_). rht, p_'rt'ent;ige d|tft, retwe betwt,t,:l tht, nt,

two values Is expressed by D,, which is dt, tiued ill t,(lttatton (5.6i).

m m ii
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In table r.10 the values of D2 are within #i0 percent.

5.8 Concluding Remarks

'1
By using the procedures outlined in an earlier chapter the in-

fluence of the ellipticity parameter and the dimensionless speed,

load, and material parameters on minimum film thickness have been

investigated. The ellipticity parameter was varied from 1 (a ball-

on-plate configuration) to 8 (a configuration approaching a line

contact;. The dimensionless speed parameter was varied over a range

. of nearly two orders of magnitude. The dimensionless load parameter

was caried over a range of about one order of magnitude. Situations

equivalent to using solid materials of bronze, steel, and silicon

nitride and lubricants of paraffinic and napthenic mineral oils were

considered in an investigatjon _.f the role of the dimensionless ma-

terial parameter. Thirty-four different cases were sed to generate

the following minimum-film-thickness and central-film-thickness

relationships:

_] . = 3.63 uO'b8G0"49W-0"073(I - e-0"68 k)
mln

= 2.69 U0"67GO'53W-O'067(I - 0.61 e-0"73 k)
C

The ellipticity pa_ameter (k) cae be written as

/R \0.64

k=l.03{_}
\ x/

Contour plots have been presented that indicate in detail the

pressure distrJbution and the film thickness. In some solutions,

pressure spikes were in evidence, the theoretical solutions of f±lm

thickness have all the essential features of previously reported ex-

perimental observations based upon optical interferometry.

I The importance of the present chapter l_es in the fact that it
i

presents fcr the first time a satisfactory theoretical film-

qlickness equation for elast._hvdrodynamic point contacts operating

_ ............_, ._ ............;..............•_ ,"_ ...................._........_'_!_'_ ..-i_:: _" .........................._I '_ ......................I|........................| _- _ J_
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under fully flooded conditions. The exponents on the various dimen-

sionless parameters governing minimum film thickness Jn such conjunc-

tions are quite similar to those developed by Dowson (1968) for

line contacts. The most dominant exponent co._urs in assocJ_tiop

with the speed parameter, while the exponent on the load parameter

is very small and negative. The material parameter also carries a

significant exponent, although the range of this parameter in en-

gineering situations is limited. Ranger, et al. (1975) have de- Ji

veloped a central-film-thickness formula for the contact geometry

of a ball on a plate from which an estimate can be made of the

minimum film thickness. However, the work presented in this chap-

ter is valid for any contact geometry and proceeds directly to the

evaluation of the minimum film thickness.

Perhaps the most significant feature of the prr_osed minimum-

film-thickness formula is that it can be applied to any contacting

solids that present an elliptical Hertzian contact region. Many ma-

chine elements, particularly rolling-element bearings, possess such

i geometry, and it is expected that the new minimum-film-thickness

equaticn will find application in such fields.

.................................... ..................1976020483-085
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i

• CHAPTER 6

STARVATION RESULTS

It was not until the late 1960's and early 1970's that the in-

fluence of lubricant starvation upon elastohydrodynamic behavior

received serious consideration. Prior to thi_ time it was assumed i

that the inlets were fully flooded. This assumption seemed to be

entirely reasonable in view of the minute quantities of lubricant

required to provide an adequate film. However, in due course it was

recognized that some machine elements suffered from lubricant star-

vation.

H._w partial filling of the inlet to an elastohydrodynamic con-

junction influences pressure and film thickness can readily be ex-

plored theoretically by adopting different starting points for the

inlet pressure boundary. Orcutt and Cheng (1966) appear to have

been the first to proceed in this way for a specific case _orre-

sponding to a particular experimental situation. Their results

showed that lubricant starvation lessened the film thickness.

Wolveridge, et al. (1971) used a Grubin (1949) approach in an

analysis of starved elas+ohydrodynamic lubricated line contacts.

Wedeven, et al. (1971) analyzed a starved condition in a ball-on-

plate geometry, and Castle and Dowson (1972) presented a range of

numerical solutions for the starved line-contact elastohydrodynamic

situation. In these references the analysis yielded values of the

proportional reduction in centerline film thickness from the fully

flooded condition in terms of a dimensionless inlet boundary pa-

rameter.

In the present chapter, 15 cases in addition to ch_e i3re--

I
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sented in chapter 5 were used to obtain the starvation results. _

From the results a simple dimensionless inlet boundary distance was

written. This inlet boundary distance defines whether a fully flooded

or a starved condition exists in the contact. Furthermore, it was

found that the film thickness for a starved condition could be

written in dimensionless terms as a function of the film thickness

for a fully flooded condition and tbe inlet distance parameter. Con-

tour plots of pressure and film thickness in and around the contact

are shown for fully flooded and starved conditions. The theoretical

findings are compared directly with previously reported results.

6.1 Boundary between Fully Flooded and Starved Conditions

Figure 6.1 shows the computing area in and arou--4 the Hertzian

contact. In this figure, as defined in chapter 4, the coordinate X

is made dimensionless with respect to the semiminor axis (b) of the

_ contact ellipse and the coordinate Y is made dimensionless with re-

_, spect to the semimajor axis (a) of the contact ellipse. The elliptic-

ity parameter (k) is defined as the semimajor axis divided by the

semiminor axis of the contact ellipse (k = ./b). Because of the di-

mensionless form of the coordinates X and Y, the Hertzian contact

ellipse becomes a Hertzian circle regardless of the ellipticity pa-

rameter. This Hertzian contact circle is shown in figure 6.1 with a

radius of unity. The edges of the computing area, where the pressure

_ is assumed to be ambient, are also denoted. In this figure the di-

mensionless inlet distance (m), which is equal to the dimensionless

distance from the center of contact to the inlet edge of the com-

puting area, is shown.

Lubricant starvation can be studied simply by reducLng the di-

I mensionless inlet distance (m). A fully flooded condition is said to

exist when the dimensionless inlet distance ceases to influence in _,

any significant way the minimum film thickness. When starting from
!!
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a fully flooded condition and decreasing m, the value at which the

minimum film thickness first starts to change is called the fully

J
flooded - starved boundary and is denoted by m*. Therefore, lubri-

cant starvation was studied by using the basic elastohydrodynamic

lubrication point-contact theory developed in chapter 4 and observ-

ing the effect of reducing the dimensionless inlet distance.

Table 6.1 shows the effect of changing the dimensionless inlet

distance upon the dimensionless minimum film thickness for three

groups of dimensionless load and speed parameters. For all the re-

sults presented in this chapter the material parameter (G) is fixed

at 4522 and the ellipticity parameter is fixed at 6. In this table

it is seen that as the dimensionless inlet distance (m) decreases the

dimensionless minimum film thickness (Hmin) decreases.

Table 6.2 shows how the three groups of dimenqlonless speed

and load parameters affect the location of the dimensionless inlet

boundary distance (m*). Also given in this table are the correspond-

ing values of dimensionless central and minimum film thickness for

the fully flooded condition as obtained by interpolation of the nu-

merical values. The value of the dimensionless inlet boundary (m*)

shown in table 6.2 was obtained by using the data from table 6.1 when

the following equation was _atisfied:

tmin,F - _mi_m=m,
= 0.03 (6.1)

. Hmin, F

The value of 0.03 is used in equation (6.1) since it was ascertained

that the data in table 6.1 could ouly be obtained to an accuracy of

±3 percent.

The general form of the equation that describes how the dimen-

sionless inlet distance at the fully flooded - starved boundary (m*)

varies is given as
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2

m* I A* (6.2)
_ = Hc,

t L

The right side of equation (6.2) is similar to the fo_s of the

equation given by Wolveridge, et al. (1971) and Wedeven, et al.

(1971). By applying a least-square power fit to the data obtained

from t_le 6.1, the following can be written:
l

me = 1 + 3.06 Hc, (6.3)

A fully flooded condition exists when m Z m*, and a starved condi-

tion exists when m < m*. The coefficient of dete_ination (r 2) for

these results is 0.9902, which is excellent.

If in equation (6.2) the dimensionless minimum film thic_ess

is used instead of the central film thickness, _he following is

obtained:

i m* = i + 3.34 Hmin, F (6.4)

The coefficient of determination for these results is 0.9869, _ich

again is excellent.

From Wedeven, et al. (1971), using the s_bols of this thesis,

the dimensionless inlet distance at the fully flooded - starved

boundary can be _itten as:

= i + 3.52 He, (6.5)

Comparing equation (6.3) with equation (6.5) indicates close agree-

ment with Wedeven, et al. (1971). The latter, however, predicts a

slightly higher value of the fully flooded - starved boundary than

predicted from the present results.

i 97; 6020483 089
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6.2 Starvation Film Thickness Fo[mulas

Having clearly established the limiting location of the inlet

I
boundary for the fully flooded conditions (eqs. (6.3) and (6.4)),

an equation defini,.g the dimensionless film thickness for lubricant

starvation conditions will be developed. The relationship between

the dimensionless central film thickness in starved and fully

flooded conditions can be expressed in general form as
i

= m- 1
Hc, F _m* - i] (6.6)

Table 6.3 shows how the ratio of the dimensionless inlet distance

parameter to the fully flooded - starved boundary [(m - l)/(m* - i)]

affects the ratio of central film thickness in the starved and fully

flooded conditions (Hc,s/Hc,F). A least-square power curve fit to

the 16 pairs of data points

was used in obtaining values for C* and D* in equation (6.6).

For these values of C* and D* the dimensionless central film

thickness for a starved condition can be written as

(mHc,s = Hc, F (6.7)

By using a similar approach while making use of the data in tab]e 6.3,

the dimensionless minimum film thickness for a starved condition can

be written as

*-Hmin, s = Hmin, F (6.8)I
!
i

Therefore, whenever m < m*, where m* is defined by either equa-

tion (6.3) or (6.4), a lubricant ,qtarvation condition exists. When

4
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this is true, the dimensionless central film thickness is expressed

by equation (6.6) and the dimensionless minimum film thickness is ex-
i

pressed by equation (6.8). If m > m*, where m* is defined by

either equation (6.3) or (6.4), a fully flooded condition exists.

The dimensionless central and minimum film thicknesses for a fully

flooded condition (Hc, F and Hmin,F) were developed in chapter 5

and are expressed in equations (5.56) and (5.33), respectively, i

_n eq. (6.8)(That is, Hmi n in eq. (5.33) is equivalent to Hmin, F _

and Nc .in equation (5.56) is equivalent to H in eq. (6.7).)• c,F

The ratio of dime:Lsionless inlet distance to the fully flooded -

starved boundary as obtained from Wedeven, et al. (1971), expressed

as (m- l)/(m W - i) , is also given in table 6.3. By comparing

these results with the results obtained from the present thesis

[(m- l)/(m ¢.- I)], it can be seen that for group 1 the agreement

is excellent. However, the agreement in groups 2 and 3 is not as

good. A possible explanation for this difference can be than a;q

approximate expression for the Hertzian deformation is used in the

Wedeven, et al. (1971) analysis. They indicate their equation

(eq. (6.5)) is only valid for small m* or more specifically

m* < 3. In group 2, m* = 3.7] and ii_ group ] m* = 5.57. Since

no such assumption is required ill deriving equations (6.3) and (6.4),

they would seem to be more appealing.

Figure 6.2 shows the influence of inlet boundary parameter upon

central film thickness for th_ Wedeven et al. (1971) results _nd

those obtained from the present thesis. From this figure it _s ob-

served that the Wedeven, eta[. (]971) results _;ive slightly higher

values of the central film thickness r_t[o of _'tarved to fully flooded

conditioh =ban thos obtained lrom the present results.

6.3 Contour Plot of Results

To explain more fully what happet_ in going from a fully f1(_oded

"-" 1976020483-091
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to a lubricant starvation condition, figures 6.3 to 6.19 are pre-

sented. As in chapter 5, in pa_ts (a) of these figures, contour
i

plots of dimensionless pressure are given; and in parts (b) of these

figures, contour plots of dimensionless film thickness are given.

In parts (a) and (b) the + symbol indicates the center of the

Hertzian contact. The Hertzian contact circle is shown in each of

parts (a) and (b) by asterisks. At the top of each of part._ (a)

and (b), the contour labels and the corresponding values are given.
J

In figures 6.3(a), 6.4_a), ., 6.7(a), contour plots of di-

mensionless pressure (P = p/E t) are given for group 1 of table 6.2

and for dimengionless inlet distances (m) of 4, 3, 2, 1.5, and

1.25, respectively. The contou_ labels and values are kept constant

in going fro_ figure 6.3(a) to 6.7(_). In figure 6.3(a) a fully

flooded condition exists. Once starvation occurs the severity of the

situation increases as m is decreased, thus implying that the most

severe starvation case is shown in figure 6.7, where m = ].25. In

figures 6.3(a), 6.4(a), and 6.5(a) a pressure spike is clearly vis-

ible, whereas in figures 6.6(a) a_d 6.7(a) no pressure spike is

present. Note in figure 6.7(a), t|_emost severe starvation case,

that the contour labeled H do_s not extend _s far to the left as

it did for the fully flooded pressure results shown in figure 6.3(a).

In figures 6.3(b), 6.4(b), ., 6.7(b), _he contour plots of

dimensionless film thickness (H = h/Rx) are given fer group I of ta-

ble 6.2 and m of 4, 3, 2, 1.5, and 1.25, respectively. The fl]m

thickness results shown in figure 6.3(b), ., 6.7(b) correspond

to the pressure results _hown in figure_ 6.3(a), ., 6.7(a). The

central portion of the film ti_ickmess contours has become more paral-

I !el starvation has Increosed (m with the minimum filmdecreasing)as

thickness decreasing. Note als< that the film thic_ne_ contour

vaices for the most severely stacved condition (fig. 6.7(b)) are much
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lower than the film thickness contour values for the fully flooded

conditions (fig. 6.3(b)).

In figures 6.8(a), 6.9(a), ., and 6.12(a), contour plots of

dimensionless pressure (P = p/E') are given for group 2 of table 6.2

and for m of 6, 4, 3, 2.5, and 2, respectively. The contour values

are the same for each of these figures. In figure 6.8(a) (the fully

flooded conditions) the contour for the largest pressure (cor_tour A)

is present, but as starvation occurs in figures 6.9(n), 6.10(a),

and 6.11(a) this contour is absent. Furthermore, for the severely

starved condition shown in figure 6.12(a) both the A and B contours

are absent. This implies that "or group 2 the pressure peak present

in a fully flooded condition gets flatter as starvation progresses

Figures 6.8(b), 6.9(b), ., 6.12(b) give contour plots of film

thickness for group 2 of table 6.2 and m of 6, 4, 3, 2.5, and 2,

respectively. The minimum film _hickness areas in these figures occur

on the axial center of the contact and move slightly to the right as

starvation becomes severe. Note from the contour values that film

thickness decreases subatantially in going from a fully flooded con-

dition (fig. 6.8(b)) to a severely starved condition (fig. 6.12(b)).

As was found for the low-speed r,_,sults, the central portions of the

film thickness contours become parallel as starvation is increased.

in figures 6,13(a), 6.14(a), ., _.i9(a), cop.tour p]ots of

dimensionless pressure (P :--p/E') are given for group 3 of table 6.2

and for m of 6, 4, 3, 2.5, 2, 1.75, and 1.5, respectively. The

contour values are the same for each oi these ffgures. Figure 6.13(a)

gives the pressure contour for a fully flooded condition; figure

6.19(a) gives the pr_,ssure c,mtour for a severely starved condition.

I As starvation occurs tl_e pressure profile flattens, since in figure

6.17(a) contour A ts ab,_;ent, i:_ figure 6.18(a) co.to.r,_; A and B are

absent, and in figure 6.19(:1) (the severetv starved c_,ndttlon) tea-
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tours A, B, and C are absent. Also from these figures it is found

that the distance from the center of the centact to the upstream

location of the largest contour value (labeled H) decreases as the

severity of lubricant starvation increases.

Figures 6.13(b), 6.14(b), ., 6.19(b) give contour plots of

film thickness for group 3 of table 6.2 and m of 6, 4, 3, 2.5, 2,

1.75, and 1.5, respectively. In figure 6.13(b) (the fully flooded

condition) the minimum film thickness )ccurs to the sides of the con-

junction in two areas that are midway between the center of the con-

tact and the Hertzian circle. As m is decreased or the severity of

staI_ation increases (going from figs. 6.14(b) to 6.19(b)) the mini-

mum film thickness area remains in the axial center of the conjunction

but moves to the right, nearer the _iertzian circle. Note the simi-

larity among the film thickness contours of figure 6.7(b) (group I

case), fig,lre 6.12(b) (group 2 case), and figure 6.19(b) (group 3

case).

The dimensionless pressure (P = p/E') on the X-axis is shown

for three values of dimensionless inlet distance and for groups

i and 3 of table 6.2, respectively, in figures 6.20(a) and (b).

The value of Y is held corstant near the axis of symmetry of the

conjunction, in these figures as a conjunction becomes starved (as

m is decreased) the pressure spike diminishes.

Flgures 6.21(a) and (b) show the dimensionless film thickness

(H = h/R x) on the ,,-a._is""" for three w_lues of dimensioniess Jr,let

dl_,ance and for groups I and 3 of table 6.2, respectively. The

value of Y is held fixed close to tile axis of symm,.try of the con-

tact. In these f_gures, particu]arly figure 6.21(b), the central

region becomes flatter as starwltlon occurs. Also, in Eoing from a

fully flooded condlti_n to a starved condition the film thickness

;, decreases substantlelly.
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6.4 Concluding Remarks

By using the theory and numerical procedure outlined in chap-

1
ter 4, the influence of lubricant starvation upon minimum film thick-

ness in starved elliptical elastohydrodynamic conjunctions has been

investigated. This study of lubricant starvation was performed by

moving the inlet boundary closer to the center of the conjunction.

From the results it was found that the iecation of the dimensionless
J

inlet boundary (m*) between fully flooded and starved conditions

• could be expressed simply as

me = 1 + 3.06 Hc, F

or

m* = 1 + 3.34 - Hmin, F
I

That is, for a dimensionless inlet di,_tance (m) less than m*, star-

vation occurs and for m > m*, a fully flooded condition exists.

Furthermore, it has been possible to express the central and minimum

film thicknesses for a starved condition as

H =H (_- i)0"_9c,S c,Fkm* .

0.25

)IImln,S = H (mm - 1' min,F * I

where

H fully flooded dimensionless central film thickness
c,F

Hmln, F fully flooded dimensionless minimum film thickness

m dimensionless in!,'t distance

m_ dimensionless iniet distance at the fuIly floo,ted - starved

boundary

Contour diagrams of the pressure and film thickness in and

t
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around the contact have been presented for both fully flooded and

starved conditions. It is evident from the contour diagrams that

the pressure spike becomes sup['ressed and the film thickness de-

creases substantially as the severlt> _f starvation increases.

The results presented in this chapter, when combined with the

fin@!ngs of the previous chapter, enable the essa:,clal features of

starved, elliptical, elastohydrodynamlc conjunctions to be ascer-

talned.

P
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CHAPTER 7

SUMMARY OF CONCLUSIONS

A procedure for the numerical solution of the complete, iso-

thermal, elastohydrodynamic lubrication problem for point contacts was

given. This procedure calls for the simultaneous solution of the I

elasticity and Reynolds equations. In the elasticity analysis the

contact zone was divided into equal rectangular areas. It was as-

sumed that a uniform pressure was applied over each area. [n the nu-

merical analysis of the Reynolds equation the parameter + = PH 3/2,

where P is dimensionless pressure and H is dimensionless fi!m

• thickness, was [ntrodt,ced to help the relaxation process. The

pressure-viscosity analysis of Roelands (1966) was used. The numer-

ical co ling of the elast city and Reynolds equation:; resu|ts In a

converged solution for the 2ressure profile. This pressure profile is

then integrated over the computing; zone to give the wllue of the cor-

responding normal applied load. This load Is then cor.,pared with the

input lcld and corrections are made to the film thicknes_ unt!l these

two load_ ;ire in agreement.

The mo_t important prclctlc,_! aspect t)f tilt, t. lastohydr,_dvnitmic

[ubr[ca[ed point-contact theory dt.velop_.d i.'; the determlnar ion t t the'

minimum film thickness within the cotltact. That i:_, the m.lintertarlce

of a fluid fllra of adequate magnltudv is extremely impt_rtant tt, the

opt, ration of some machttle elemt.nts. The minimum l ilm thicknt.ss for .t

fully flooded colljtlnction was f¢ dnd tt_ be _t function _t thc el lipticitv

par.lmeter and the dimensionless speed, load, and material parameters.

In the results the elliptlcitv par:lnit!tt.r w,l.s v,tritd lr,,a; I {it ball-_m-

pl:lte configuration) to 8 (a conrigt_r:lti,_n approaching, a lit, t. contact).
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The dimensionless _peed parameter was varied over a range of nearly _
J

two orders of magnitude. The dimensionless load parameter was varied i/

over a range of one order of magnitude. Situations equivalent to the !

use of solid materials of bronze, steel, and silicon nitride and lubri-

cants of paraffi,,ic and naphthenlc mineral oils were considered in an

investigation of the role of the dimensionless material parameter.

Thirty-four different cases were used to generate the minimum film t

thickness and central film thickness formulas given below as

Hmin,F = 3.63 U0"68G0"49w-O'073(I - e-0"68 k) (7.1)

c,F = 2.69 U0"67GO'53W-0"067(I - 0.61 e-0"73 k) (7.2)

where the dimensionless speed parameter

ri0u
U = E'---_ (7.3)

X

the dimensionless load parameter

F
w = _ (7.4)

E'R 2
X

the dimensionless material parameter

E'
G = (7.5)

Ply,as

and the dimensionless elllptlclty parameter

a

k = _ (7.6)

Equations (7.5) and (7.6) can also be written in more convenient form

as

G = E's (7.7)

0.64

k - 1.03_R_x) (7.8)

In equation (7.8) the elllptlclty parameter is expressed strictly in

terms of the radii of curvature and thereby eliminates the common

practice of evaluating the elliptical integrals of the first and

!: i sLcond kind.

,....................................................................................
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The importance of equation (7.1) lles in the fact that it pre-

sents for the first time a satisfactory theoretical film-thlckness

equation for elastohydrodynamic point contacts operating under fully

flooded conditions. The exponents on the various dimensionless pa-

rameters governing minimum film thickness in such conjunctions are

quite similar to those developed by Dowson (1968) for line contacts.

The most dominant exponent occurs in association with the speed pa-

rameter, while the exponent on the load parameter is very small and

negative. The material parameter also carries a significant expo-

nent, although the range of this parameter in engineering situations

is limited. Ranger, et al. (1975) have developed a central-film-

thickness formula for the contact geometry of a ball on a plate from

which an estimate can be made of the minimum film thickness. How-

ever, the work presented in this chapter is valid for any contact

_ geometry and proceeds directly to the evaluation of the minimum film

_ thickness.

Perhaps the most significant feature of the proposed minimum-

_ film-thickness formula is that it can be applied to any contacting

[ solids that present an elliptical Hertzian contact region, r'_,_,yma-

chine elements, particularly rolling-element bearings, possess such

geometry, and it is expected that the new minimum-film-thickness

equation will find application in such fields.

Contour plots of the fully flooded results have been presented

that indicate in detail the pressure distribution and the film thick-

ness. In some solutions, pressure spikes were in evidence. The

theoretical solutions of film thickness have all the essential fea-

tures of the previously reported experimental observations based upon

optical interferometry.

In addlt_on to the fully flooded studies, the influence of lubri-

cant starvation upon minimum film thickness in starved elliptical
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! elastohydrodynamic conjunctions has been investigated. This study of

lubricant sta_ation was perfo_ed by moving the inlet boundary closer

to the center of the conjunction. From the results it was found that

the location of the dimensionless inlet boundary (m*) between fully

flooded and starved conditions could be expressed simply as

m* = 1 + 3.06 Hc (7.9) I

or

%

m* = 1 + 3.34 Hmin, (7.10)

That is, for a dimensionless inlet distance (m) less than m*, starva-

tion occurs and for m _ m*, a fully flooded condition exists. Fur-

thermore, it has been possible to express the dimensionless central

and minim_ film thicknesses for a starved condition as

0.29

c,S = Hc,F

~ ~ f m - i _0.25
Hmin,S = Hmin,F_* - i] (7.12)

Contour diagrams of the pressure and film thickness in and around

the conjunction have been presented for starved conditions. It is

evident from the contour diagrams that the pressure spike becomes sup-

pressed and the film thickness decreases substantially as the severity

of starvation increases.

The starvation results when combined with the fully flooded re-

sults enable the essential features of starved, elliptical, elasto-

hydrodyn_ic conjunctions to be ascertained.
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9T}* C

9|* C CUPVATURF SUM &NO DIFfERENC=
07¢ C

91o RX:II.IRAXI'II./RRX)
eq* RY:II°/RAYI+II.IRBYI
9_,11 R HO--'R1(',.I?Y

96* G IMMA-- | qX -RY ) ]RHO
07o C
98* C ELLIPTIC INTEGRAL5 f AND t
e9, C

lO0O XKzSORI ( ?. Ot'JO!

101o C
1C,?* C XK IS IHt FLLIPIICIIY P_kAMEIER

10 3. C
1 (",,e * | AKZ_OaT I I 0-( I ./(XN**Z I ) )

105. CALL CEL IFtEtAKw|ER)
106. XJK--¢++.CRT ( (2.¢f -ire( I. 4_CAMMA) } If E O{ | .-GAMMA) I )
ICTv Aqzxt(-XJK

|_8. xKzwJ_
109* lr (ABSLAq).LT.D[LI GO TO 2

10. GO TO l

11. C
12* C S[MIMAJOR ANCKfMIMINOQ AILS uF CONTACT fLLIPS[

13. C
It|* 2 ST: l| .-X J 'L*o7 )IGA* II .-X IBvvP }IGB

,iTs* I I : ( ].0 ( xtK*o2 lot" *P I/(PI OkH0 I
lb* A 1 : I T I ¢',.P loot I./3. I

I?* DI:AI/XK
IR* Z1z.%*ZD
l @* 2 ?-'2._*_C/YH

__'f3* Z_zTIOO2

I71* Zttz?Z_*?
1770 A a I -S'_'/PI

173* r "_ ._.+ORXO4_IeO7 )

++ 1?we T? z oSoPyo l A I oo2 l
IPS* WP]T| 16o_) RHO t {'aAMI'4AtXW 9L eF

k !_ :_ r _MI T | tIHDHOZ i_ ] _ t _ e,_X gI_HGItMMA: l[_ | bosomy I_HK 2 l_b ._ I_X I
F" 127* 1 2HI : .O i (.* 5 tSX ,2mr z vC)16." I

lPP* C

IPuv C DIMFNSInNLfSS pAPAMFIF_ GROUPINC

l_'(lo C
131" [P:_./S?

I 3Zo 5_U--. %o I UA*UB I
i 33. SwV_-o_*(¥i'*VPI

| .]r.,. IHfTA--AIAN( $MVISMUI

I .]_* (3:[ PIP I VAS
137¢ U:_I%0*PXeV/I P

)3PC _l 2:'peRlolC, XlfP
|lee kIL Zltg :Po_X/( ;.1+ P,A1 I
I_O* APCHAP: |. I I | • * I Z **_'Y | /| ll.$RI I )
It|l* 'lw I NA"- ? ,I]_* ( AI;'CHAPIG*U | *1.7_ I I WLZe* +07q I

It Iq?* Dr)w$O';z'/.tSef, eo.f_qouow.71wLZAf_*o°l
lk]* HWINCL: I Goo. E _. I • I Ue*..(',_ 11 ¢ WLiIe .07 $)

+ Itt Ire WDITLI_.|gD) HMINCL

i I_t tot? FOR_ATIIH e['HHNINCAL:t[)|b.t,|
lathe wOlt[16tlPt, l POwSON

IW7* lot. FnRUATIIH ,)I_Hf)OWSON WIGG|N_ON LINE CONTACI FORMIJLA:+DI_.6)

It|P* NDIT[ 16t'Spl ) FIMINA .wL ?AQtARCHA_
l¢iq* 5DI FORWATIIH ,6HHMINA:eDIib.StSW,6MWLTIIR;t[')I6.StSIo'_HARCHAR-sO|I_..'r)|
I_C* Pl -":_ • *P / 12oIP1IAIiB) )

1¢1* dOlT[ (F.,ttl AItP,|tp|,IrP
|'?* it Ff)PMAT (;HA--tf) If+,oe+tSX,pHB:sD|b.z, t t, XtSHPNAXz,OIboS,SXs_HAA:oOIb._|
l' _* V+ttl 1+.51 U,TH[TAoG.WLI
)( t, e r) ]"f_I_WAt ( IH_e_HU" tOlb.5 tSll IbMTH| ltztf) lb.5,SXePHf:vOlb.5 v
I'r,+ l 5WtpHWztDIP.S)

I _ t',* C
It"TO C INITIIL Pal-r',SU_'| AND fILM INICKN[%_
I' P* C

l' '_* 7R:i./ll°*l?.eg'f)/13ol_X|l
I # f+o WP _-Pt ( MHOIIp | IIP

le.l* WIll I116.61 WP IN[)

J t"p V p1 IOPV4tl ltlH Wl_:+L) Ib.5,51i,3mHO;oDlb.5)
I_* Ltl :VI',[ 1¥150
I (. ¢_1 Q?':FP/196qR.526_

IL RF',PRODUCIBII,ITYOF THE

ORIGINAL PAGg IS POOR
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|E,_e Or_zFLPHA_EP
166. 06 :'E[ TA*EP

l_.7e 14 CONTINUE

|60_ C_LI. SUBb |H0tMtMNII

_g* IF (M.EQ.P) &O I0 353

70* M:O

?le MNI:I

720 dPITEIf_tSPU; PHIMX

73o 5_D FOP_IATIIH eFHPHIMXztDIL.5I

74* 333 CONTINUE

7%* C

76* C VISCOC, ITY ANP DENSITY

77* C

:78. Dr) 7 NZI.NXY

7q* DF NSIN J-'l." (QSOPR (N) ) I| I.oL_:PR (NIl

80. V] SINI:Q 1¢o ( 1.-( |..0?oPP IN ; l*ol )

_1' XMUIN) :D[NSINIIVI S IN)

82,1, 1 CONTINUF

_'_* C

P4* C PFL^XJIIIGN COFFFIENIS A,B_C,DtLtAND M

BS_ C

P',_,o 3PO CONIINUF

_7. SUMI :O.0D[_

_R* O0 Q Jz2,_!Y

8 °* DO In I'-'2,NXl

nO* NzI'(J-I )_NX

(}l* NI:_I*I

92. N?:H-I

_4. IF (J.[_..L:Y} t_:N

o_¢ Y I : YMU ! _l | |

(,'70 Y ?ZYMU (i'r2)

2_F_O Y r,zl4(N I )

?{_1o Yf,:_(%? I

c 2r,q_ y O z_ ( ',_4 )
?F_ YIF,'_ I*¶,Q_T IV' )

2r'&* v ] | : V?OS_,l_ T I Yf )

_f_ 7_ V I 2--V _o _._ T ( Y_ )

2Q_* Y I _" Y_ OS(JP T ! v 9 ;

k 2F_q* A (NIzZ _l_l _.*Y | +V21

21lo f_ (N) :211t ( Y 1;_ ] ._V4 I

?l_* DL 7IN I --ZW_ I ].oV)*Y4 I

214,1, Xt |:4oll ( _ _* iV I'Y2) _Zq_( Y._Y_ I )

21_* XL?--|.t,/IY7_*|- _l

2l 6e XL 3-'_ 3. ( Y ]04 I _. ey%-4. *Y 7',,Vb ) *Y | I * | y%-4 .¢V7e ] .*V6) )

,') | "_4 XL 4:_q* IV ]2.1 _.#yR-q. IV?eYe I _yI ]*1YR-q.*YTe _.eYOI I

218* XL INI--XL I*XL2*IWL ]+XL4I

2lq* X',+ l- 12.*UoH |*PWI( Y7** 1.5 l

221"I,1, Xu2: ( YSO()I N¢'+I N ] I-Yb*DfNSIN2 I I*COS( /H[Tt l

22|* xM ]: I V_"[_[ N _ l Pu3 I-Yg*DFNSINN l I*SINI THL IA I

222. x- INI : X. I _l ?1 *X_2+Z2e)_M_ I

22_* I[.} Ct)NTINUf

22 W,I, 9 CONT INU[

225o ]+"I 7 SIJNI:").f_D_

226,1, MsuPg:f_

227. C

?2Re C IQrLtxa/InN roPMU_ t

h' 22q* C

2]I* Dn _L)Q I:2,NXl

212Q MN--IelJ-II*NX

_] 1,1, MNAz_Me I

_ )N,I, MNB:MN-I

_11%O I4NC "MN |NIl

2_6. fir lJ.[ Q.NYI MNC :NN

2 ) 141, NNU:NN-NX

2_R* _P_I_N I:PH| INN )-ODI'* (PHI IIqNI*IXWIMNI-A IMNI*PNI IWNII )-B IMNI ePH]I l"+NO I -

2q9. l -(" IWN ) 4PH ] I WNI;+ l-DE Z ( I'IN l Wll:'N I | WN{ I l / II IWN I '

2wOo If (PPQIMNI.LI.PHIMIII GO IO 5_5D

241* N_U_9:MSU_*I

242¢ _PI_(NNi :pHIMII

2qq* Scud CONTINU[

2tl4* IF IIPI_IHNI.LI.n.I (',0 I0 ,.1119

2111f_ll Y I R: ( ,_ pl_ | le t I -PH | IqN I I /]Pl_ t _tN I

pilaf 5IJH | :'_,tlW | oAR% I Y | I_ )

I 241* GO TO %ia_

2490 ._R9 _IPP INN ):_,0OU
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_i9¢ 3PB PItItMNI:?PEIMN)

?50e 3_9 CONTINUE

7515 3_E CONTINUE

_Z$ ]|n CONTlNO(

7_35 M4UP:MAUGeI
25qe |r ISUM1.LT.DEL31 GO TO 3||

75_$ GO TO 307
?5bo C

2S7O C VISCOSITY AND DENSITY ]T[EATION

75_* C

2_n$ WPIT( |6,q_N) NAU_,M$|IM9

?fie _ FO_MAIIIH t_HMAU_:I]_tS_ebH_UH_:t|R)
?b?e NIuP:n

2_q$ O0 _15 J:?,NY

Z6Se Dn _Ifi ]:2,N_l

2665 N:|+IJ-I)$NX

Z_75 P_INI:IPHI(NI/IHINIeeI._I*IPOSM-IoItPPSVINIII©OSM
?&_$ PQSVINI_P_INI

_695 P_UM:PSUM*PRINI

2705 OENSN:I**IQSePRINII/II.eQ_4PRIN))

27|$ V|SN:OIe$I|.-II**O2$PPINI)eSZ)

. 272e X_UN:Fl_NSNIV]SN

77_e YQQ:(XHUN-XMUINIIIXNUN

27q_ SI)MS:_UN_*AR_IY991

27_e DfNSINI:D_NSN

27b$ VISINI:VISN

277e 316 X"UiNI:_MUN

27_e 3IS CONTINU[

279e MNl:l

?fine If (MH9.[Q.]) GO TO q_9

?RI$ CILL _UFblHO.M,MNII

?_Se _¢g CONTINUE

?_e JENN:J[NN+I

?RQe WP]T[IbtHIO) (UM2

2_e _l_ FOPMATIIH ,SHSUHSItDI6.SI

?fi&e _F I_UM?.LT._IL|) GO 10 |_

2P75 IF (MA_SS.GT.]_O) GO TO gSb

?P_ MAX_2:M_XSS*]

?_ge GO TO 3N_

?9Pe C

2915 C APL|[_ NOP_AL LOID

?o?e C
?_le 13 C_NTINuE

29_e qaX_?:l

795e IFIPHg.[Q.II _0 TO _Ol

29&t VOlT(16._P|l JFNN

?_/e _I EOR_TIIH ,gHJ[NN_FEP:_|fi)
2_Pe JrNN:_

799e _Uq:3._D_

l_e D_ Ib I:2,NII

_?e OU_:O._DO

_05e I_IIB_.N[.II UUi:I._DO

1_6e DO 11 J:?,N¥
3()75 N:I*lJ-I leNX

]_,P4 | 10H]:OU]*PPIN)

]Oge Ib QU_:_tJ_*QUJIQUI

Tl_e PFl_P:_.e[PeAIeRIeOUq/I].$LCeZDI

_}tt PCHf(X:2.O[PeA|$RIePSUMIIdCe_I

3]?e Wglt( (_,_ODI P_J_PCH[C¢

]lie 5_0 FOgMAt Ilk ._HPRI_:t_iG.StSI,?HPCH|CX:,Di_.5)
_l_e C

]154 C NfW C[N|_IL F]LM THIC_NfS_

)lb$ C

_lTe IFIJ(NN.LE.5I XJ| NN;._D_

]IAe Ir IJfNN.Gt. SI XJENN: .6_0

]lge ]FIJ[NN.GT.IOI IJfNN:.8_

3?_e Irl _ Nk.Gl.lSl IJfNN:.gDD

]?|$ |FI&B_IHOI.LI.|.D-_I N0:-H0

1771 IFIH0.LI.P.I HOBAP:H0elIJLNN*II,-IJFNNIelP/PBI_I4eZTtl

]?]e lrl,o.oT._.l HORA_:HO$11JLNNelle-IJENNIoIPRARIPIee_t|

]Sqe Z%U_5:IP-PO_IIP

_?Se SUN_:IP%IZ$UM_I

377e IB FORMITIIN .?HP:s01b._.SI_HPBAR:tDI_,_.SIe]NNr:_Olbei_

)?_e IrIsu.].LT._fL2) GO tO 19

_]_e Hn:HOPAR

i ]31e 1_1 (ONIINU!

]]7$ D0 N4_ J:ItN¥

i
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|$ SHBPOUT |Nf C[ l IpitI_?vAN .!tl_!

2. IwPtICI! OOURL[ PR[CISIOh (A-HwO-Z|
]* IFP:O

W$ C T[ _T MODULIJ_

,r,e {

j t,$ GFO: I • -A)_ IAI_

7$ It" (g[ OI | t_t6
P,I, ! I F R -"]

9$ RF TURN

I0* C

11$ C SFT RESULT VALUE-_OYFI_IrLOt-

12. C

lit* _'?:I.NON

| %$ Rf'I LIPN

i_,s C

17. C CONPUTF INTICgAL

1'$ C
I¢$ _, W zC, f 0 J
2rIe ANsI.oF, FO

7|= i N | : 2._, D'.J

;2* GFO-%OP/ (r,l O) j
2"_$ AP I - l .I"I[,{7

•"4$ Aizl.3pD
_'%0 7 WZweAAeC[(]

_7$ AA:AN

_P_ AAPI_API

7c$ AP I :(.r O - t_'!

]P$ A'_--WIAP I *IN

_1$ A';ITZ.e ,NI

'2$ C

_* C If ST nF _CCUI;ACY

_4. C

_r_O 1¢ IAAPl -(_[ O- | .D-WSAADI )9e9.8

_f,* h (',f O- SGt: g ( f | C,* t AP 1 I

_7$ G| 0 _ C,f (_ *f,[ 0

_me Gn TC 7

_0$ 9 V I-'.T"'_PIt,]/JPl

_F)¢ P? :_ J *AN

t_l¢ r_l :PIOAN|

4?0 p{r I I)lV %

FNP 73,1 COWPILAtln_',i ',,I() f)IAGNDST|C'S.

le "-,UPPOU I INF SLJF(_ IH0 I ,_11 oWN_ I

7$ l-r'tl?l T Dnt _tf P,_rcI¶ION (&-H.O-I)

_$ C'gWlm'*f)N N"._IVf .MBJ_'WX .NY

qt f "WWON t I oH I ,&'| oWPIO.Pl t_¥ .JW tP I oSl .%b sT ] eI2

¢,e Cn-wO_ wllt_ll.D(|%2r}|.ScTbc}l_H¢|5?CItPgfl_2OltPsZ¢lt_O|_rI_S¥tl#_{31

_ll (" e ':iv 0*_ [[ _HM|Ni_{I_DeINIyM

1{_0 NYI-.;ONy

i I$ NP _Nx

I?$ St- .9/;C

I o$ _c_ ; ,"_l,'f:

Iq$ ltlWh?.F6.t! ?P TO 2(:

| Illm r u lul.iN[,ll IC, TO i([}

I_,t Y:%J

lie C

time C HI PT,'I tN Pill ,. _,UPF

In* f

2P$ D_ I J: I tNv

."1$ =:%n

?/e DO 7 I I,Ni

,'It N" l'lJ-I )INW

_w¢, ¶_()-(V-VHIO_

? *' e _ L " I __ I I -- _ _1 ) * * ' 1

_te %1 : ¢I,)') * I_.' I

7_l 91%|- I_'l%;'0$I ?$_£|

;'me IrlUhJ.|lw.{)| f;0 l?1 4

._'}* I_ (l_',(',ll.L I.l.I bP f(_ ]

_|$ t, _ t(_ 4

'i

_-_ - i1_
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_t ¢* ;'PSV(N) :PP(*)

"_ l Y : Y*SII* t+A

_e C

_P'_ C |_FLUrNC[ CO[_F ]C|[N1 US|L* IN [LASI|C O[FORMJlION

_q* C

_0* Y :C .300

_?e X : .q. (_ r'll_

ca* q-" I*lJ-] )*N_

_¢,4, % ]:%_._)1 I I%_es2)Sl I V*_ J) Oo,_ )* t_l*_i+tee2)

q_i [ _ .7.%_ T | ( )f K4Ji. _ ] e| | y*_J lie=( J • ( X ¢(j_t)i=l) _ |

_'/,_ _ ¢, :e.._v T r i xgee,_ ) e ( ( y.o _A) Ot_ |. i If-_p ) eo;_ !

_,Pe _,_, : _._G T ( I Yi.lee2)el (y-_Jl*e2) *| I(-_ )e@2)

&,oe _ 7: ( x_. (y,%A |,¢_ 3)/(XN ,(y-%i)._k | i _,

=,l'e _0 : I XI_ O ( Y*_A ) .C.#)) / | XK*I 1*%A ) *_|

_, D I p. I :n l tl Y**,F I@AL OGI_'II*_ tO( ye_A Ie_L OG|_q_ *

'k* ] "iOIX-_F_eAL Of, l%qJeJ)etY-_Jle&LO(',(%]O)

¢*+3 _ X_ %*¢r *t,t.

_7_t k.? |Tf I/ e',," ;I) (I'(, (_1) thzl +7_0 )

',_* ',';+ rr_;+_a_(]_. .;,d'f,'t/,7_flH .JOn]]._l)|

tq$ ;,w | ]L ( f .,._-+_) [_,lh) .%: |t?O_ )

_'_e _r'r fO_=At(lp tth, /,?Lj#),.+ ,j=_lj,¢ /ll

+l.'l Iv° 171 CP, t)OP) l [+IN I .N-- I ,,,?L+0 ) +

f,;:'l _'_t. FO+q"AY lIP ,I+Pt/.TF}( If'+ .I_,P13.=,,II)

tSe C

+-E,e ?F, CnNTINU_

f 741 {')O ?[It _ J_-ItNY

e,mt [_ 701 1-],r_l

t+*')* _ _ .+] * ( O-] )oNX *NX V

7_4 _q: _ -.JINX eN% y

Tie 7r_ I p ,_(_ J ) : f, la 1_== )

72a I'_U ('_NT _NU[

7 tO _ 7 J: I tNy

?_1 N_:|_l,)-J I*NX

It,+) "+tJ_ : 6).(!rI()

7)¢ DO q JJ:|tNt|
_Pe _O:lJJ-| )eNJ

7q'l N:! I|+', ( J-J j) * !

f-PC r+¢,_ _ | *(N-_ )eh_

_1* On llJ l|:l,_X

_,"_ Nu.: | I *N_,[T

_-,0 M:I_H",II-II)

bqe N=, ='=*N_n

_'(>1 It' ¶tJU': _I)M * P_ (N_¢ ) l r)IN_ )

_Te WIN_I'2.ItLJUlP[

_.mO H I N ) ) :I+*p I *h+lO l 5 (i_) I *+il IN ] I |

+q_ |r (Hlk_l.(+l.i+V|kl C0 TO _0_

c,(e HulN:k_(_¢)l

_le N+ lIV| -Ni

+ "_,II _ f'_l| 1'_I_ ) : P_ IN + 11 ( HI N =j) I,I I ._l

+me 1 C_llmuf

_, i;,. kiOlt( it+ lip| i %¶lvl tHI.|N

'++e m3| lOl+"ltll t_ t.l_,.h++/Wt:.llO,_IL, Xt+Smx+ll_:tb|4k.+l

',11 +_" t l ++_",I

(, l,l ! *+t_

fNt, _t, COUPILAI 1"', NO' Dlt_r.ko_[ICS.

+
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TABLE 3.1. - INPUT CONDITIONS USED FOR COMPUTER EVALUATIONS

-Effectiveelasticmodulus, E', 21.97 MN'cnl 2 (3.187.107psi);radiusof curvature

For solidA, rAx= rAy 1. 111 cm (0.4375 in.)] {

' Dimensi_mless Nm'mal applied Efb,-,'tivt, radius Radius of curvature for solid :?,
' (m,ditim',

loadlmram- [ I,wce. [ l ] [

e,er. [ F I ICx [ I"v ] "!';x ] rl'w [
\\ -- ..... .

F- I I t I i:
N lbf Ull] ('DI 1[I. UIll Ill. ('Ill 111. }

I 0,516b 10- T _'10"555_0"21V':_ -'_'5558 0.2I: 1.111 0.437: 1.111[0.4375

) .5105.10-5 t 896.4 1200{ .5558] .218i_ :,,53 .21,eJ 1.111[ .437, I 1.111 / .4375[

I .2102 10 -7 ] 8.:J64] 2]1.284[ 5055[15.00 [5.90_; ]-8.260[-3.252 ] -1. 20":]-. 47251

TABLE 3.2. - CHARACTEtHSTICSOF Tile COMPONENTS OF FILM TIIICKNESSAI,ONG THE SEMIMAJORAND

SEMIMINOIt AXES "AItEN TIiESE AXEb ARE DIVIDED INTO THREE EQUAL DIVISIONS

ANt) CONDITION ] OF TABI,F 3. 1 PREVAII,S

17'-1 1
Pressure. p Rati,J ] EL;slit def.rmalifm, v.' lLlthl T.lal separatitm, S w Ratio"

" y N cm 2 psi R 1 _ | 1t w II3
1 ,.m in. 2 s ,.o-, in.

_ / 7i( 7393 t0"0851'!0C[.0745 .1235.1(1801061. (!00 0.085610-3.07590"033710-3,020935.33 6. 275 0'0881'10-3.08810"0347'10-3,03470,7910.9363

iI] ll:i 04_2 .0<0 05_7 .0227 1.830 0s02 .0351 1,984i33 0 ) .0366 .0144 .6021 .0970 .6382 I. 787
I 15ii . t_999 .0269 .0106 .2720 ,1265 .0498 ,8633

IT,_ ,9999 .0216 .0085 .1468 .1697 0668 .4847191i . !J998 .0183 .0072 .0882 .2243 0883 ......

215 ,9998 .0157 .0062 .05"/2 .2896 1140 ......
233 , .!1997 I 0137 .0054 .0392 ,3653 1436 ......

1)

I 253 i .9996 0122 ,0048 .0282 .4511 1776 ......
. ,)J.1,_ Ol .0044 .0207 .5469 2153 ......

295 .9904 n102 .0040 .0158 .6525 2569 ......

9ii 7; .0745 .1080 I, 000 (175(t .0299 6. 279 .0881 0347 .9363

IIt;} .0462 .0(;7(I 1.(100 0704 .0277 I.832 .0892 0351 I.-38'/

13 i 1. 000 03G6 .0144 ,6027 .0970 0382 1. 787

15 I . !1!)!19 0269 .0106 .2723 { , 1262 0497 .8617

17 ) I 9999 0216 .0085 .1469I .1694 066'] .4849

19h 'l ] . !,998 ()183 ,0072 .0883 .2240 0882 ......

2 lb [ .9998 (1157 ,0062 .0572 .2893 1139 ......

23b ] 9997 0137 .0054 .0392 .2650 .1437 ......

'_ 2511 . ,),),}6 ,0122 .0048 ,0280 1 , 4509 .1775

2711 .9!195 .0112 .0044 .0207 ,5464 .2151 ......

RFZ'RODU_ IBfl,iiS t_e' i'HF

k t",,,i' :; :'cop

..... ,,m
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TABLE 3 3. ('[TARA('THHSTICS OF TIlE COMPONENTS OF Fll,M THICKNESS ALONG TtlE SEMIMA,IOR AND

,_I.:MIMINOR AXI':,_ _VIII.:,N TIfESF AXI.:f4 AT!.: DI. !!_I]D IN FO FOLI( t.;QLAI, DIVISIONS

A\I) ('I)M)IT1ON 1 t)P TAtII.F, 3. 1 PtIEVAII.7

f'-,vd,,t.<,<, " - P,<_Tut,'. I) liilli<, l Ekislic (teh,rm.lli ....... -_t'_lii'-'_]-- T.tal Sel_lrati ..... S. W / Ratio

I ), ,<_..... ,, ,'i ..... } %¢01_ 9;i .0863 10 f .1251'106 l.OOfl 10,0864.10 -3 0.(/340.10 "3 t73.43 0.0879.10 -3 0.13346".10 -3 "),1284

11:, .0805 .1168 I .0810 .031!1 11.89 . (3879 .0346 ) .7808

ELi .06"15 .0979 I .0704 .0277 3. 965 .0881 .0347 ,938C

lS]i ,0410 .0594 ] .0546 .0215 I. 603 ,0886 .034P 1. 674

17:1 _ . (337h .0149 .6762 .0937 , 05;_i ......

I!1;, .9999 .0295 .0116 .3543 .1125 ,o443 ...... iI

21;I . 9!199 ,0244 .0096 .210_ .1402 .0552 ...... I

23a .9099 .02(38 .0082 .1356 .1701 .0689 ...... I

25;i .9998 .0183 . (3072 .0926 .2150 .0850 .......

27h .999t_ . f)163 ,0064 .0660 .2631 .1036 ......

29:_ .9!197 ,DI47 .0(35_ .0487 .3160 .1244 ......

31a .9097 .0135 0053 ,0370 .3747 ,1475 ......
i ,
, , 33a .999fi .0122 004_ , I12}_8 4392 .1729 ......l

35a .9996 . O114 00,15 ,0228 I 5090 ,2004 ......

l 93.#_ 0107 0042 . -,

37a . tf_ . .0184] 5847 9'_02 ......

/

3¢)n ( 9( 4 .0(i.q0 f103!} .0150 6657 .21_21 ......

11/9 9a .08(35 .116t4 I (10(i oil.;l 0 0319 I1,9o 0_79 .0346 .7808

13!) .0f')'_5 .f)!t70 I .070,i (r_77 3,068 I 01479 ,13346 9381 1

13b .0410 .0594 , .0546 0215 l. 60,t ()148f_ .0349 1.674

I!,l) . 02,)o . 011(; , 1125 0443

21i, .909!) ,0244 .0r)96 .2108 ,14(32 0552

231) 9909 (120it f)()}C 135_ .174ii 0686

i li_ f11_3 . D()]2 0!i2"_ ,71[19 OB,_0251) . !l.I..I

27b f199_ 0163 ,0111_,1 f)6t', l 2629 1035 t

2911 IL :)fif)_i I ()l 1'7 ooE,q O,llt;_ I , 3157 1243 ! ......

'.;th [[ . li(i}i7 i f)135 (lilt)3 0_17] 2744 1474 ' ......

j .....

3'AI, !)_ ! 7 ! ¢1122 0fi.I}4 f}2_i8 I . 4387 1727 I ......
351} 9¢)91; ! it'. 14 .0o45 022, '_,i 50_i4 21103

I 37b .11:,95 I 0107 flf),12 ,) I ] .5"<,12 .2300 I ......

_fl] L_ .............. ......... 999.1 i ,,,,99 _ .:fif!it!) ...... .0151 i .,,fi:,, .2fi19 . i': ~'-

................................i§76026483;-i'



TAIUE 3 q CIIAI(A{'TI',III._TI{'Y O1, 'I'III_ {'OMI)OM • N'I'S (}1- I'II M 'I IH('KXI>'F /_I,OXG TIIE SI<MIMA.JOR AND

,_I<.MIMIM,)I_ AXI<S WIIEX THI<SE AXI"_ AI(I< I)IVII}IID INTO I"IVI'I I<{,_I'AI, DIVISION.S

AND CONI}VIION 1 {}t TAIH.I, :_ I I}I¢I.'.VAII S
I

I l

17,;_ 118:'72 .12o(; 11x2_ .0'32¢, l!) Ol {18",'4 .0:544 .' 07570378° 15a (}_;.I . 10'.K_ 0_, ,58 .02t111 1i. {',!11_ .0B74 . (}344

lT;t fl{120 089_ (l(3_;f) .112 f)_* :{. ()()8 . (1H74 8344 .1921

19u 0372 .0539 (1521 .020._ 1.45_ 0879 03.46 .7226

} d (l _ (KI _i,1 .0313(121it 0151 71!I',') .11!11,1 ......
)

23.t I I ! :)!(!)!J (13111 ,0122 . 417o . 1052 (1414

i

i

_Sa ] I b_': 2 01o_I _657. ,I IDI, 0491 ......I
27a , | _12'2f) 011!)(_ 1_04 14'.)4 .n588 ......

} )2!1a I)2(Kt (t(,g!) 1_,,2 . 17b;;/ 11702 ......

31a . !1!)!18 1118:! 0072 (I!144 21ll .08:11 ......

337_ . !)!)!)_I I)I(G 0_)f,5 (171{', '2.!79 ,0f1711 ......

35ii . !t!818 BI 3'.}. o0(0 .0556 288:1 . l 1.35 .......

3771 . !1997 Ill 40 I)(1550,14() 3:1251309 ......

39u . !)_)f)7 Ol:lr) I)05l (13,_15 3_,fl5 .149H ......

41h . !199t; o122 (If).|<: . 1129o 4:t21 . 1701 ......

431t ] !)!){)(i O114 {10.15 . f)240 48(;9 , I917
r

45a ,9995 0107 fll),t2 .0201 545(; ,2148 ......

47£ .90!)5 0102 0o,10 , o170 (;C181 )
•23,)4 ......

49£_ ] . !)!1!14 00!1"; 0038 • (}145 (37:t!I .2(3521 ......

13i) 111i i. .0032 . 1'.}06 l. 0{10 0B20 (llt26 19.02 0874 .0344 .0408

15ii ,0"754 .1081_ ] (1_'5!1 .02!tlt (3. 702 .11874 .0344 .0"1'5"/

17i) 062(1 .0_/()9 1 {165f_ . o25H, :g. (}l() . (1,.;74 . (1344 .1921

19b .0372 . (_53d (1521 .0205 I. 41_(1 . {/{C_9 . (134(i .7243

2 lb ) 038,t .0151 .7202 {'!,14 .0360, ......

2:1l) .9999 0310 .0122 .41741052 ,0414 .....

25b " 0282 0103 .26(;01247 .0491 ......

27h ' (122!) 0000 .1805 .14f1,I .0588 ......

2{ ) _ 0203 0080 1283 . 1781 .0701 ......

:llb ) .9998 O183 0072 .0945 .21(18 .0830 ......
I

33h
[ . !)!)98 01175 0065 .0717 .2477 .0975 ......

:1_',)) I 9998 O152 0060 055fi 2880 . 1134 ......I

37t) ] ,99f)7 0140 0055 . (/441 3322 .1308 ......

391] I .9997 0130 0051 . 0355 3802 . 1497 ......

411) , ,1,1,16 0122 0{}48 .02{10 4315 . 169!1 ......

4311 ,9995 O114 ()(-145 . o240 48(;7 , 191(3 ....... i

,If)l) . !)0!15 (1107 0042 0201 5,153 .214V ...... 'i
4711 [ } . _,){,)!15 {}IP)2 (W.40 .0170 _107_; .2392 ...... ,_

49h l 1 .!)!1(14 (10!17 I .0()3_ . B| 4,_ i,734 .2651 ...... "

- ....." "...... 1976020483-113
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TAIH,E 3. 5. - C'IIARACTEI{ISTIC5 ()F "Illt: COMPONI.:NTS (.)F f. ILM "I'IIICKNES,S AII-)NG TI{F, SI<MIMAJOR AIM)

SEMIMINOH AXES WHEN TttE5l.', AXE, _ AI{E I)|VIDED INTO 'I'III_EE ktJi:Al, I)IVISIONS

AND CONDITION 2 OF TABI.E 3. I Pb'EVAII.S

Pressur(,. p

'71 " _ ....... i1-+- ------'Jr ----
_a L3953.106 0.5"734,106 1.000 g44.1(l'310,72r'l.10 -3 35.33 I.B97 I0-3 0._4_7. I0 "3

I IL_ .2144 .3109 .9994 II 243 .4892 1._30 1.922 .7565 3.102
13]i 0 .9989 I 7861 ,3095 .(;021 2. 092 ,8235 4. 897 [

/ !

15_ .9981 I 5824 .2293 .2720 2.723 1.072 4.17n/ /
ITa .9972 ] 4¢_76 ,1841 .1468 3. 653 !.438 3. 924 "

19ii .9960 ] 3917 !54'2 988'2 I 4,831 i. 902 ...... _

21a .9947 ,3376 .1329 .0572 I t:. 238 2.456 ...... !i

,23a .9!132 ,2967 . I168 0392 7.8_9 3. 098
255 .9915 .2( 47 !04'2 . ,,.,,,,a......... ,. , t_ 3. _26 ......

i

2a 9896 ] .2390 .0941 .0207 1 I. 78 4. 638 ......
F

2!'fi .9874 ,217!} . 0858 .0158 [ 14.06 5.5:]5 ......1

9b 7 t .3457 .5014 .9998 1.63:1 .6,t51 6, 27,(t _ 1. 900 .747!) 1. 086

1ii_) .2144 .3109 .9994 1. 243 . ,1_93 l. 832 1. 922 .7564 3.104
13/) .9989 .7 P,f,1 .3096 . B027 2. 092 .8232 4.89B

i5b . `()9B1 5824 .22'4 ,2723 2.723 !1.072 4.164

l%b . `(/91i(1 3(£117 .1543 [ . {11-;83 4. 829 1.9BI ......

21h .9947 :';:{17 .132!* 72 6,236 2,4[)5 ......

, q 9 . 116_ .t1:192 7. 864 3. 096
23b . _, 3. 29};7

27i) !*_:_6 .2393 .09,12 [ .02o7 11.77 4._]35

• 2_,i, ' ._74 21:_2 :,8_,,__ _ .01_.;14.05

TABI,I-: 3.6. - CIIARACTERISTICS Of-" THE COMPONENTS OF FII,M THICKNESS AI,ONG TIlE SEMIMA,IOR AND

SEM1MINOR AXES WIIEN TILES(< A×t,;S ARE I)IVIDI-;I) INTO I'-'OUI,I I,;QL'AI. DIVISIONS

AND {'ONIJITION '2 Ot "I'AI_I _ 3. I Iq{EVAIIA-;

' Y ' psi 5] N t'll_" eli/ ill

91 9a ,4004,10 f_ ().511117 106I 1.00o I 863 10 -3 0,73'33 It} -:l 1.892 10 -3 0.7448 10 -3 (L7391]

I la .3736 .5419 .9999 I 746 .5_74 1. 893 .7452 .8450

| 13:_ 3134 .,|5.18 .9997 I 514 .5962 3.!)f,5 ], I.H!)6 .7465 1.180

15a .19(12 .275{t .9!194 1 177 .4633 1.603 [ 1.911 .7525 2.748
I

17a 0 . 9989 8143 . 3206 . 6762 [ 2. ¢)19 . 794tt ......

19;I . 9984 l;350 . 2500 ?:-13 2. 427 . 0555 .....

2 ]a . 9978 5258 .2070 .2 I{}l; 3. 023 1. ] 90 .....

23a .9970 4503 1773 . 1/,6] 3. 769 I. 484

t

H

25a . !1962 3942 1552 .092, 4.1_53 1. 832 .....

27;1 . 9952 35 |0 13h2 . 051i0 5. 669 2. 2212 ......

29;I .9942 31fi5 1246 .0487 6. 810 2. 681 ......

:}ht .9!130 2ti_}:1 1135 .0370 B. 072 3. 178 .....

33a .9_}17 2847 1842 O2h8 9. 459 3.5'24 .....

3% . `(}giY_ 244}_ . {}!}{,3 . O228 In. `(17 4. :11B ......

37a .988H 2276 .BBg{_ .OI84 12.60 , 4.`(158 ......

[ 39;_ .9872 212{; .01137 . }}15(I 14 34 5.1_47 .8450
I h 9;, 37:t_i .5419 .!1999 1.746 ._;a74 11.90 1.'_93 .7452

131, I ,3134 .454(; 9997 1.514 _{ ) ]. }.}_;, 3. !}f;8 I. H96 .7464 1178
] I

15h 1{!0'2 ,275!} 9!}.,4 1 177 ,41;34 I.t;O4 1.911 .7523 2. 747 It
17b !19811 _/14:] .32o7 . }7717tt 2, O18 .7!}46 ...... [

l!d_ I 9!184 h3511 . 25t1{1 . 3547 2 't2{ { 550 ...... ,
I

211 t !1978 5:258 ,'21171 .21:1i_i ,i,li2_l I 18,(} .....

23b :,_,7. .1[(113 , 1773 . 1358 :I 'N;7 i I 483 -- -

251,', [ !19172 3942 , 1553 o_127 .1. {]51 2.1230831 .....27b i 9952 3510 . 1382! . (}GLI 5. _16,1 ......

'2!}b I !1!1,12 3165 . IL)41; . O41Oi 1, 8 [ 2 _;79 -- -

:111) _ !193(I 2/{ti3 . 1135 . O371 811t77 3, 171, .

33h i ')917 2h47 i 1n42 O28_1 !) ,I!,.1 3. 722 .- -

3!)b ' , _)_)03 244(_ I . (}!)),3 , 0'32_{ I (k !))', 'I 2i151H

:l I I I .!)Shl_ 2'27h I }8!)_) j 0}84 12 5!_ 4955

%, ":
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TABLE 3.7. - CHARACYI'ERISTICS OF '1"1tl-2 ('OMI_O_ENT,'-; O1" FIlM "I-IIICKNI,:_,"; AI.()_',G "I!t1"; .%t.LblIMA.IOI_ AND

SEMIMINOR AXES WIIEN TIIES[.; AXES AI_E I)IVII)EI) INTO [.IVi{ I'X)I'?,.I. I)IVISION_

AND CONDITION 2 OF 'l':'_131J.: 3. 1 PI{I_;VAII.S

Ct,ordinates Pressure. I' , Ratio Flasli,'def,,rmati ....... ' "Ratio [ "l',,t,,l s,,parati ..... S. w l¢ati,, l

I

I .....

l:b lla L4027 106 0.5840.106' 1.000 99.05 I.,_80 10 -3 0.7403 10 -3 0 0287

13i_ .3859 .5597 .9999 1.787 I 70:_4 !9.!)1 _ I. 7404 .uJ'Jn: I
155 . 3499 5075 . 9998 1. 637 . 6445 6. (;!t8 1. 881 7407 . 0854

. l"Ei .2876 4172 .9996 1414 .556t] 3.008 1._84 7417 .2558

, 19_ .1726 2_03 .9993 1,124 .4427 1,459 1.895 II! 17461 1,228

215_ * .9990 8252 .324!1 .7195 1. 972 7764 ......

233 .9986 I .6662 .2623 .4170 2.264 8015 ......

25_ .9981 I .5646 .2223 .265_ 2.690 1.059 ......

2'T,,t .9976 .4917 .1936 .1_04 ] 3.218 267 ......

29it .9970 .43111 .1717 12821 3.840 512 ......

31a ,9!163 .3922 .1544 .09441 4.547 .790 ......

33_i .9955 ,3566 .I404 ,0716 I 5.339 9 102

; 35_i .9947 .3272 .1288 o556 (;.213 !2.448 ......

37_a .9938 .3020 .1189 .e440 t 7.165 2.821 ......
i

39_i .9928 I .2807 .1105 o355 8. 197 3.227 ......

413 .9918 .2621 .1032 .0290 9 307 3. 864 ......
_ 435 .9907 .2459 .096_ .0240 10.49 4.131 ......

_' 45_ .9895 I .2316 .0912 .0201 II.7(; 4. 629 ......

475 .98_,3 I . 2189 .0862 .01711 13.10 5. 157 .......

[ 493 .9870 I .2075 .0817 .0145 14.52 5.715 ......
lll_ 115 .3859 .5597 .9999 _1.787 .7034 19.02 1.881 7404 .o412

_ 1 *]; .3499 .5075 .9998 If. 637 .6445 6. 762 1. 881 7407 .0854

,_ l'b .2876 .4172 .9996 1.414 .5567 3.010 1.884 7416 .2557

11i_ .1726 .2503 .9993 11.124 .4427 1. ,160 1.895 7460 1.228
2.b _ '0 .9990 i .8252 .324!1 .7202 I.!171 7761 ......

i, I
!, 21b .9986 .6662 .2624 .4174 [ 2.263 8911 ......

i 21b .99811.5646 .2224 .2660 I 2,687 1.058

I

._ _ 2_]_ .997t:, I .4917 .193f, . 805 3.216 1.266 ......

; 21b , .!1970 : .4361 .1718 .1283 3. WI8 1.511 ......

1 3 b .9963 ] 3022 .1545 ._L945 4. 544 1.789F .... - .....

I 31b .9955 1,3566 .1404 .0717 5.337 2.101 ......

3ii] .0947 ] .3272 .1288 .0556 6. 208 2. 444 ......
I

3'11 .9938 I .3020 .1100 .0441 ] 7.160 2.819 ......

i

31b ,9929 'l .2807 .1105 .03'.,5 I' II. 192 3.225 ......

4 b , .!1918 ' .2621 . 1032 .0290 I 9.299 3.,161 ......I , 2459 ......

41b .9907 _ .____j21,'._ .09{;9 . 0240110. 49 4. 128

4bb I .9895 0912 .0201 11.75 4,625

I .2316 . - .....

4% [ .9883 .0862 .0170 13.09 5.153 ......

4,i; 1 .9870 :._0_5 j 0.17 .0145 14.51 5.711 ......
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I,._,HI 11 _ ,i ¢'HAHA("I I';I_ISTI('S ()I" 3ttt" {JOM IK)NENT,"; Of F'II.M '11H(..'KNI_S:S AI.ON(,; TIlE

SKMIMA,JOI] ANI) SI*ZMIMI,NOI{ AXF;S WtIEN "FItESE AXES ARE DIVII)I<D IN'tO "I III_I.:I-

I<OI'AI DIVISIONS ANI) ('ONI}ITION 3 OF' "fABI,E 3. I PREVAII,S

:$ ..................I.......... 1' [.""p_'dl Ii l('_, PF_ '_LH_ . II l"kl_.lJ( (]q'lHflH_t{l{,li. _ I]_11i _ "l',d_l ._L_IKII'III]_}II. ,S * W l{ati(}

N Pill psi _ m. 3"}.42 _ 10.0409 1{'-3l 0.016110 -3i "_1) L 00248 1¢)u 0.03f_0 VI i; 0 (73!}9 10 .3 170157 10 -2 1.030

)a O217 , {K!15 . I)33t_ 0133 4, 1_1_2 ] ,0409 . O161 I 1. 135 _i

;l . O134 , UI!15 021fl 0087 1, 1;]2 I . 0414 .0163 4. 030 'l

,]a } i) .0102 0040 .2705 i , 0480 01 t}b 7. 494
:}ii {071 0025 . 1128] .Oi)!}l .0272 4.093
" I I f77)5_3 0022 . ¢1591 ] . 0083 0387 4. :150

_7:, I i}{14,_; oo18 .o:151I • 1330 0527 ..... !_

,:£i ,0033 0013 .0154 I • 2243 ,0883 £

2571 . 0030 0012 . 0109 I .258{7 . 10118

2"/,,3 ,0028 0011 , (1(181 [ , 330_ 71];]7
,-in;:

uu2:} 0010 . 0061 , 4067 . 1601 .....
b .. .0217 .0315 .0371 0146 ).205 .0411 .0162 _ 1.271

1[} .0134 . {}195 .0315 0124 3. 210 I " 0414 0163 2. 2-:3

3[_ ) 0 .0249 0095 1. 340 .0434 0171 2. 820
5t) I .0211 0083 . ()_75_ .0511 .0201 2.544

7[_ ] .0183 0072 .4114 ] . 0630 .0248 2. 517_1[} .0163 0064 .26381 . o7_2 .03{18 .....

]ii .0135 0053 , i27{) .1189 .0468 .....
5i_ .0124 0049 .0040 .1438 .0566 .....

7h / .0114 0045 .0712 I 1720 .06"/? .....

]l_ .0107 r}042 i ,0552 l ' 2020 .0799 .....
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TABLE 3. 10. i

CHARACTERISTICS () I-' TIlE

COMPONENTS OF FILM 'I'tlICKNESS AI.ON(; TIlE :"I';MIMA lob A".D !

SEMIMINOR AXES WHEN THESE AXES ARE DIVIDED INTO FIVE EQUAl. DIVISION,'-: !

AND CONDITION 3 OF TABLE 3. 1 I)REVAII.S :_

ml Pz'e.'-;st_ " l{ati,"""--_ Elasti[. del,,''''"_l'l_l:lti,,ll v,,_ "l',,lal .",_'parati,,n..':, ;,7"_

- H3 _iS ( Ill It1 ('Ill ill• :_

]1 99 24
tli 9.1179.1 0.1704.1 1.000 8661 10 3 0.3410 10" 0. H75f) 10 .3 o.3443 IO -:t q i_l!

3i .1126 .1633 .8179 ;1220 I 14.5H .8740 / .;1441 12,

5_ .1021 .1481 .7216 .2841 I 4.786 .8725 ] :1435 -.n6(
" 7_ .0839 .1217 .5804 .2285 I 1.981 .8733 / .3438 .00_

9ii .0503 .0730 .3!175 . 1565 ._24 .8799 .:5464 I. 61';

1_ I 9 .2316 .0912 .'122 .9507 .3743

3a .1755 .0691 .174 1.179 .4640 .....55 .....

1448 .0570 .1081 1 4_10 .5825 .....

Th .99 .1242 . t1489 .072! _38 .7236 .....

9_ .1092 .0430 .951( 2. 249 885515 ......

35 • (1384 • 037: 2. 710 1. 067 .....

. 0348 028._ 3. 223 1. 269 .....

5a / • 0808 . 0318 .021 t 3.785

_ .0744 .0293 .017_ 4.392

1 l 490

1. 729 ......

)E .99 (, .0688 .0271 • Ol:l_ 5.050 1.988 ......

1"3 .0643 ,0233 .0113 5. 756 2. 266 ......

I_ I 0602 .0237 .0093 6. 510 2. 563 ......

'a _ .0566 .0223 .0078 7.310 2.878 ......

.99J r .0536 0211 .0066 8.161 3.213 ......

5 .99fi 0200 .0056 9. 058 3. 566 .....

_i 1126 .1633 1. OOC • 8440 . :1323 7. (15 8753 • 3446 .226_

1021 .1481 1.000 .7996 314_ 0.50 8755 .3447 .283£

0839 1217 1. 000 ,7330 2_(; 5. 105 8766 .3451 .4141

0503 0730 .999 6459 2343 2. 767 .879:1 • 3462 .8447

.999 5525 2173 1.597 .8981 .3536 .....

• 999 4925 1!13!1 1.025 .9731 3831 .....

.999, 4478 176:1 .7020 I.n86 4275 .....

.999' 4117 . 1621 .5036 1.230 4841 .....

• 999( .381_ 1303 .3742 I. 402 .55_9 .....

.999, t .3539 1401 .2859 1.601 .6302 .....

. .399_ .33:]5 1313 .2235 i 1.825 .7187 .....

.999_ .3137 1235 • 1781 12.073 .8171 .....

.999,_ 2962 1.66 .144212.350 .9252 .....

• 9991 .2804 11(14 . 1184 12.649 1.043 .....

•9990 .2664 1049 .0984 12.972 1.170

• 9988 . 2535 . 09!18 . 0827 I 3. 320 1 . 307 .....

• 9987 .2418 .0952 • 0702,3. 688 1.452 .....

::_ _ .9985 .2311 .0010 .060014.082 1.6(17
_, ._ _ .9983 .2212 .0517 14.501 1.772

I

REPRODUCIBII,ITY OF Tt{_
_,:" ORIGINAL PAGE IS POOR

: al
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'll TABLE 3. 12. - CIIAIL,%CTEIRISTICS OF TIlE COMPONENTS OI-" FILM TIIICKNESS ALONG TIlE SEMIMA.IOt,I AND
G

SEMIMINOR AXES WHEN THF:SE AXES ARE DIVIDED INTO FOI'I,_ EQUAL DIVISIONS

AND CONDITION 4 OF TABLE 21. 1 PREVAII,S

C ...... Ilnate; T Pr(' ....... -_p---I ,¢:m,,_ F,asti('dt, l-rma) ........ ,Cab,, I',ta, s,,par;t,_,,_:_-'w-_ I,;it,,,

,I,| 7 ,,,,-=-q:21 ....i ,,; cm 2 R1 cm HI.

[ I 13[i 914 1:12t; I , (;444 ,25217 2, 7:ID / V;_()! 34tV> I. :2!10

15i_ 555 . O_OS .43 tO .1t,!t'7 . !141'7 . h_4!) . '34!)_ :1. _69 '
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• TABLE 5. I. - EFFECT OF ELLIPTICITY PARAMETER ON

MINIMUM FILM THICKNE_

Elllpticit'y Minimum film thickness D/fference between

parameter,

_ k Obtained from Obtained from Bmin and Hmin'
Dp

EHL point- least-square percent
; contact theory, fit,

_mtnHmln

1 3. 367x10 "6 3. 464×10 .6 +2.88

1.25 4. 105 4.03l -1.80

I. 5 4. 565 4. ,509 -1.22

1.75 4. 907 4. 913 +. 11

2 5. 255 5. 252 -. 05

2.5 5. 755 5.781 +. 45

3 6. 091 6. 156 +1, 08

_- 4 6.636 6.613 -. 34

i 5 6.969 6.961 - 12r
8 7.048 7. 050 *. 02

TAELE 5.2. - EFFECT OF DIMENSIONLESS SPEED

! PARAMETER ON MINIMUM FILM THICKNESS

Dimensionless Minimum film thickness Difference between

I speed param- Hmi n and Hmln,

_ eter, Obtained from Obtained from DI '
U EHL point- least-square percent

contact theory, fit,

Hmin Hmin

O.OR416xlO-11 3. 926x10 "5 3. 915×10 -6 -0,275

• 1683 6. 156 6. 252 +1. 564

.2525 8, 372 8. 223 -1. 780

• 3367 9. 995 9. 987 -. 078

• 4208 11.61 11.61 -. 004

• 5892 14.39 14.57 +1. 280

• 8416 18.34 18.54 +1. 104

1. 263 24.47 24.39 -. 320

1. 683 29.75 29.61 -. 4(;7

2. 104 34, 58 34.43 -. 432

2, 525 39.73 38.95 -1. 977

2.946 43.47 43, 22 -.576

3,367 47.32 47.30 -. 042

4. 205 54.57 54.99 T�765

5.050 61.32 62.20 +1. 430

i_ TABLE 5.3. - EFFECT OF DIMENSIONLESS LOAD PARAMETER

ON MI!NIMUM FILM THICKNESS

Dimensionless Minimum film thickness rdfference between

load param- Hmi n and Hmin,

eter, Obtained from Obtained from DI '

W EHL point- least -sq_re percent
contact theory, _it,

i' Hmin Hmin

O. ll04qxlO "6 5.9_9×10 "6 6. 941x10 "6 -0.41

: .2211 6. 492 6. 599 +1.65

. .55:18 6. 258 6. 172 -1.52
.7371 e. 156 6. 044 -1, 81

• 9|14 6. 085 5. 947 -2.27

1, IN 5,811 5. M8 X�98

pp. t: Ir GPAG gI,ARKNOT
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_I -'_ TABLE 5,4. - EFFECT OF 8OLID MATERIAL AND LUBRICANT AB REPRESENTED IN DIMENSIONLE.a_

MATERL' L PARAMETER ON MINIMUM FILM THICKNESS

BoLd ms- Lubrtcsmt EPanensionlesI l)imelulliOnlees i Dimen'Jionlelq Minimum fihn thickness Difference between

terlal material pa o ',peed param- load param- Hmi n and Hmln,

rameter, eter, eter, Obtained from Obtsined from DI '
G U W EHL point- lealt -square percent

contact theory, fit,

Hmln Hmlh

Bronze _,,_:b,ic 2310 0. 3289x10 "11 0.7216×10 .6 6. 931×10 .8 6.8"/3>(10 "6 -0. 84

Bronze i Naphthen/¢ 3591 .9422 .7216 17. 19 17,404 +1.25 I

Steel Paraffintc 4522 .1683 .3686 6. 317 6. 336 _-. 31

StIiCOnnttride Paraffinlc 6785 . 112P .2456 6. 080 6. 038 -. 70

TABLE 5. S. - DATA SHOWING EFFECT OF ELLIPTICrTY, LOAD, SPEED, AND MATERIAL ON MINIMUM FIIA4 THICKNE88

CIMIe Elltpt/city DLmsnlionlesi Dimensionless Dimensionless Mintmmn film thickness Difference between Results

k par_,Jvteter, lead param- speed param- material pa- "
Obtained from Obtained from Hmi n and Hmin,

k eter, eter, meter, DI,
W U G EHL point- least -square percent

i contact theory, fit,

Hm_n Hmln

1 1 0.110_xl0 "6 0. 1593x10 "11 4522 3. 367>,10 .6 3. 514x10 "e ",4.37

3 1.25 i 4. 105 4. 078 -. 66
3 I.s I 4_5 4 554 - 24
4 1.75 4,907 4. 955 *. 98

5 5. 5. 255 5. 294 +. 74 ' "Eill_t¢tty
tl 3. S 5. 755 5. 821 +I. 15

i_ 7 3 6,091 6. l_ _1.72
I 4 9. 836 6 652 *. 34

' ' I 6.9,9 ,.00, ..48 JlO I T. 048 T. 091 ,. e, ,

II 8 .25.11 6. 492 6.656 *2.5;.,

15. .36M 6. 517 8. 412 *I. 50

15 , SS_'16 6. 268 IO.225 -.69 load plus

14 ,7371 6. 1543 _. 095 -, 99 call 9

I$ .9114 6. 085 6.197 - 1.45

18 i. 104 5. 611 S. 918 ,-1.34

17 I. 290 I S,65T 6. 631 .3.43

18 .7371 .00416 3. gseit 3. 005 -3.06

19 . |3;5 0. 372 9. 032 -4.06

5.0 .334T 9. 995 9. TOO -5.. H

5.1 i • 4100 11.01 I1.31 -5.. O'S

5.1 .5895. 14.39 14.29 -. 66

23 .8418 10. 34 II. 21 -. 71 Speed plus

|4 ! 1.5.(53 24.4'I 24._ -1.9_1 " cm 14J
$

,s I 1.6L1 29.15 2I. II - I. I2
II 5.. 104 34.58 33. M - ;, TO

11 I.S2S 3'8.15 58.44 -3.5.6

ll 1. 041 4..1.4T 42.60 - 1.19

II 3. 241 47.35. 4iL 76 . I. 18

30 i 4. I01 $4.01 04. 41 -. 29

31 4.0_0 1_ 61.25. 61.59 *.44

II .7211 .3IM 5.310 4. 931 6. 936 *. 10 "1Mltortall

31 .1114 .14]| 3401 17.19 17, 59 *|. II _ phil

$4 i 14M .115.5. $71S 6. OlO 4. 116 .. SO i j case 4

I

L
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_ TABLE 5.8. - EFFECT OF ELLIPTIC/TY PARAMETER

ON CENTFG_L FILM THICKNESS ! ,

'Elllpilc|ty Central film thlc.k_ess Difference betwaen

;L parameter, Hc and Hc,
k Obtained _rom Ol_tiltned from D2 '

EHL point- least-square percent
ctmtact theory, fit,

Hc Hc

i 1 8. 6. -I0.52860×10-8 13P>lO -6

! 1.25 6.964 6.565 -5,73

;. 1.5 7.001 6. 921 -1. 14 'i

i_, 1.75 7.015 7.218 ,,2.80 _:_
2 7. 402 7. 465 _.85
2.5 7,653 7. 841 +2, 46 l

i 3 7. 845 8. 102 +.3.28

i i 4 8. 292 8. 408 * 1, 40

[ ,6 8.657 8.625 -.37

i [8 8.°72 8.875 i

I TABI.E 5.7. - EI'FECT OF DIMENSIONLESS SPEED

il PARAMETFR ON CENTRAl, FILM THICK'NES,S
Dimensionless Central lllm thtrknes_ Difference between

speed paran]- _ ..................... H¢ and He'

eter, Obtained from Obtained from 1)2,

U EHL point- Irast-square p*,rcent
eontac¢ theory, fit,

Hc lie

,, O. 08418×10- I1 4. 917- IO "8 4. 720. tO -8 -4.00• . 1883 7. 517 7. 495 -. 29

.2525 9. 999 9. 825 - I. 74
• ,3387 11.40 11.91 +4.47

_ .4208 13.07 I3. 8t +5.66

.5892 17. 13 17.29 +. 93

,5416 21.35 21.94 +2.76

1. 263 2#. 82 28.78 -2.90

i, I. 683 35.5l) 34.83 - L. 89

2. 104 41.05 40.43 -!. 51

2. 525 46.84 45,66 -2. tO

2. 948 51.08 50.81 -, 92

5. _7 55.5,15 55.33 -, 41

4. 208 63.81 84.20 _,, 61

5. 050 71.25 72.51 +I, 77

TA|II,E :).8, - EFFECT OF' I)151F',N_IC)NL,FI_SIOAD I'A|tAMETEIlI:';

t)N CE%'r|_.AL FiLM rtI|L'KNES_

i ......... r ..... " ....[l)l{llerliillitlli,li!_i C',.lltr,i|film thl¢'kiit,,_._ |)ltti{>t,rlCl,llt,l%l,t¢,ii

| h_d _,'.m_- F- _ " t u,. ;u,d It .
t'IUI', _._l)l_ll_t's{ ll'_ li (]_(_lllt'_l {ltiitl I).,,

W : Eili. p-till i h.;i_i-_quiir,. ( it ¢'l't'i'lkl ]

i i ,.,,n,.i,, , ,,,.,,,'y, f,t, ' i

I I _." II ' i

,, c 1 ...........

O. I00_. lO "¢_ , _. ti57,1o "t; i 8. 424 I0 ¢; 2 6_# ':

,2211 T, 7'J6 7 9_(_ ,2.4'J ]

,552_; 7, 309 7. )12 ,2, 78

7371 7. _17 7 3t)1t I _
'. .92L4 7 ,111 7 _31# -4.¢itl

I. 101$ 7 4lt_ T 170 ;, 32

1. 290 i_ 7i$2 7 0_ . I .4 '..4 :,

l! {

.....................................................1976020483-12
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TABLE 5,9. o RFFECT OF SOLID MATERIAL AND LUBRICANT AS REPRESENTED IN DIMENSIONLESS

MATERIAL PARAMETER ON MINIMUM FILM TIlICKNESS

_vlld n a- Lubricant Dtmenmlonlen Dimenslonless Dimensionless Central film "_'lckness Difference between

terla, material pa- spppd p_r_m° load par:m:- - ....... Hc and Hc'Obtained from Obtained from
rPJneter, eter, _'er, D2,

O U W EHL point- least square percent
contact theory, fit,

He He
i

Bronz_ Para/finlc 2310 0. 3296×10-I 1 0. 7216-10 -6 8. 422 t0 "6 8. 226_10 "6 °2.33

Bronz4 Naphthenic 3591 .9422 .7216 20.70 20.99 +1.40

= |teel Para/finlc 4522 .1683 .3686 7. 505 7. 819 +4.18

]llicon Para/flnic 6785 .1122 .2456 7. 825 7. 585 -3.07

nitri 3e j __ -_----___

TABLE 6.10, - DATA SHOWING EFFECT OF ELLIPTICtTY, LOAD, SPEED, AND MATERIAL ON CENTRAL FILM THICKNESS

Ctse g|t pqtctty lYsmemitooLeal Dtmenmtrmlena Dtmeneiouteaa Central ftlm thi_J_ens Difference between ReSuLt| ]

IN=';_eter, load param- speed l_ram - material pa- Hc and He,Obtained from Obtained Irfqla
k eter, ¢ter, rameter, D2,

W U G £HL point- leaJlt-IKjuare percent
contact theory_ fit,

Hc H(:

1 O.llOe_(lO"6 O.16|3xt0 "L t 4522 6. _0×10 "6 8. 215,10 "6 -9, 40

| .25 6. 9454 6. 647 -4, 55 ;
3 .S 7.001 1.006 *.07

4 .76 7,015 T,30_ ,4.15

5 7. 402 T.5545 *2.08 Elbpticlty
$ .5 7. 853 7. 937 +3.71

7 7. 845 8. 202 *4.55

I 1, ,192 6. 5L3 .,t. 67
9 8.657 8.136 ..9t

10 S. (}13 6. T_ .1.33

I1 .5_tlI 7. TM 8. 339 *45.87

12 . MM 7. 505 a. 059 *7.3't

13 .6638 T,309 ,. 843 *T. 31

14 .131L 1. G_ I. 693 .5,. 34 _,osdplum
IS .0|14 T. ¢LIl 7. 570 -. 43 cue 9
18 I. LOG 7. 418 T,4l't *. 045

17 1. 290 S. 78,t 7. 410 +9.50

18 ,7371 , ONLO 4. SLY 4, 0M - I. 65

19 , ,t525 g. _ 10. tO ,,.t.01

20 .3M7 11, 40 l,t. 24 .7.37

81 .4_18 13.07 14.'tl ,8. T,t

21 .5NI 17,L3 LT,Ill ,3.97
; 23 . $41e |l. 35 33.$1 *S. O0

|4 1. _ :m�.el ,19. el ,. _0 _ pl_ I
8S 1,883 35._ 36.90 ,1,35 cea#e se !

_,,t.104 4L. 05 41.79 , I. M
:,t.5|$ M. 44 47.32 *L, ,84

le 13.347 56. M 37.2| ,3.04
30 '4. 208 63.91 _. 49 *4. _0

31 _ !5.05o 71.,ts , 75. t3 .3.43
12 I . 'T,tIt 3114 3316 I. 413 8. 4M .. 55 Msterttt3

33 I .721_J 941,t 3561 _. 70 21.83 *4.44 plul

34 , ) ,,t4g LiII 811_ 7, _5 ? 823 0 cm 9

,:. g

._ _

' "" '"" .... " """' ..... ] 97602048:3- ] 22



TABLF. 6. l. - EFFECT OF STAIIVATION ON MINIMUM

FILM TtlICKNESS FOR TtlItFF (;HOUI):'; OF THe

[)IMENSIONLESS SPEED AND I_AI) I'AI(AMETFI_S

I ,- Dimension-'-'_=-I Group

le,, ,nlet 1 1distance, I 2 3

Ill
[))n1(r'n_,ton[_"Ss loztd _ktr;_t_;('Icr, W

I DInletlF_lollleb. , p@e(l l)_lr;lllll'l_II ' , IT

_|lnjrlltllll film It l('krll,_._ IILllllt

.......... _, _,) I0 "fi 11)-1;

4 (:. 317- I1)-6 29.27 .)7. 511

3 6.261 .'7. H4 51.70

2.5 .......... 26.38 It). 8!)

2 5/.)97 23.46 } 3!)._.11
i

• t,75 .......... 21.02 34.61

1.5 b.236 .......... ;!7.90
1,25 3.945 ....................

TABLE _. 2. - EFFECT OF I)IblFNSION[,I.'SS SI)FI'ID AND I.O.'tD PAI(AMETI-IRS ON

DIMENSIONIJ';SS INLET I)ISTAN('E AT I"UI.I,Y F1,L)_DI- I) - S'I AItVI" I) BOI;NI)ARY

Group Dimension- l)lt.en,_ton- l)llnt.nsl_ ]; ullv flo,)(b,d I Full') /h.)(k.d IJl))it.rlslon-)
!

less sp_ed less load less radl ('_'ntral ftl.l | nllni.)um l),ss lldet

_rartl@[iPr, p_ralil@=t@r, [_rdllltrtl. thlt'Kll/'_y_ ] |llnl Ihl('k" (ll._[i,tnc# ' at

- U W It x I) t11., I- ] .*._,s, I_tl7 {h_ied

"' I t II ....... F ,tarred

i' botll1(lar y,

IlL*

I 0. 1t18:1" l0 "11 0. 3)iafi" IU "6 2115.9 7 4HO IO "b 6 221 Ill -f) 2.132

,' 2 1.f'83 .7371 1'13 ?) t:l:' _;J 12'3211 ....... 3.713 5.050 7:171 16:l. 5 7o_;7 til) k,J2 5 57

TABLE 6.3. - EFFECT OF DIMI';N."IIONLI'Jb5 INLI./I !nS'IANCE ON D|blI.:NSIIJ_LI':55

CENTIIAL I"ILM T|IICKNI,:SS BATIOS

illlelllJlon= _lttn of central R,_tlo Of llllnllllUltl |ldet I)oulll_r_' Inlet boundary

r le#J_ Inlet lllm thtcknesse_ hlm ti'll('kl_!s_',("_ p.ratt,.qcr, parameter of

distance, for starved _nd h)r _tarv,,dawl (m - II (m" - Wedeven, et at.

t i 23 m fLeeted e,)ndt- fh_k'd c,,ml|tlonr, 1197|),

t).O_lS) Ilnx|fl) S I(|H|l), F i lilt- _,} ([|t w " L1

llc,s Hc,¥

._2 I 1 I [) 9d95

e .94_0 .9e_40 _173 _L0_

j i. 5 .71597 .8417 30_6 3054
] 3.71 ---1 .............. 1 1 ._2gi

3 .9574 9534 73_10 611 I

2.5 8_70 . 'Jo34 55_5 .4_'_4

2 7705 ._034 3_'JO 30_

I. 75 .7151 .719_ 27_1 229_

3 _ 57 1 ....... i ......... I--- _49el

4 934_ .943_-' 6_b b579

3 63:10 . _4,_7 4y_e_ JT)_

2.5 74.1,0 "/697 3_ 276(J

.#.)2 6..3 6551 2 ls_ 1_0

1.75 . .5,.)09 _1 1641 131J5

l. 5 4155 .4_4U IO*#t 09,10

-- 1976020483-123
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Figure 2. 1. - Geometryof contacting elast!csolids.
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rBy-

la-D - 0 Plane. la-2) x • 0 Plane, (b-Dy • 0 Plane. (b-Z1x - 0 Plane.

(a) Twodifferentell.p_idalsolids. (hi Equivalentellip_oldalsolidneara plane.

Figure2.2. - F..qutvalentellipsoldalsolids.
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_; Figure3.2. -Elasticdeformationofa semi-inhnitebody i
} subjectedtoa uniformpressureovera rectangutar
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Figure3. 3. - Exampledivision of area in andaround contact
zone into Nual r_tangular areas.
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Figure 3. 4. - Effectof locationalongsemimalorandsemiminor axeson percentagedifference
in elasticdeformatiunwhen d • ] and9.
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Figure 3.8. - Effecto( numbero_divisionsacrossellipse axison
computerrun time.
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Figure4.1. - Divisionofareain and
aroundcontactzoneintoequalrec-
tangularareas.
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Figure4.2. Componentsof film lhickness for ellipso_al solidnear a plane.t-

1976020483-133



116
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I --lldo ( ×
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Figure 4.3. Meshused in numerical analysis.
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°Figure4.4. - Par_ola andcorrespondingpoints representing _ as

a function of ×.

Uniform

nodes -'_" I

f
i
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= ×

_' 61 Uniform nodes __ ._.,,.

_ Figure 4.5 Nodalstructure used for numerical calculation',. ' ' '

1
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Figure 4.6. - Flowchartof main program.
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Dimensionless
pressure,
P" pIE'

A 0.7O(]O_
II .M
C .60
0 .50
£ .40
F .30
G .20
H .]0

H

aj mm

/' • I m

I ,° ¢ •
, II g

j' 4 °

m

wt

amm

w_I mm

i (a) Cofllour plo( of dlmlHIsk)rtlels I_'ISSUTI.

FigureS.2. - Contourpk_se/cllmenslonlrjspressureandfilmthicknessa_ thrN-dirnenslon_lrepresentationotpressurefor
elli_k:HyPirameierIk)of8. 1'hedimensionlessparar_et,JrsU. W. a_ GareheldCot)start!_ definedin Mluaflon_. lOP.
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Dimensionless i
filmff_Ic_ness. J

H• h/R.
Jl

A 7.0610:6
O 7.N

• C 1.40
D 1.10
[ 8.2O
F 8.90
G 9.80
H ll.00

q' C _'

' e ".

d

.d

A

_ , .

4

I

,t
m_". ,

_ i• m
% •

• ,= I

_,_j J/
_b)Conb_Jrpie(ofdimensinnles5film thickness.

,' Fkjure5._. 1 Continued.
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Gimenslonless _ii i
pressure, _

A 0.8_10"3 _ ii
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Figure5. 3. - ContourplotsofdimensionlessDressureandfilmthicknessandthree-dimensionalrepresentation ',_
ofpressureforelli_lcltyparameterO0of6. ThedimensionlessparametersU. W. andGareheldoonstantas
definedInKluatlon(5,lO), 4
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Figure5,4, - Contourpillsofdimensionlesspressureandfilmthicknessandthree-dimensionalrec,oesentationofpres-
sure forelllpticilyparameter(k)Of4. ThedimensionlessparametersU, W. andGareheldcot-tar asdefinedin equa_lion (5,]0).
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Figure5.5. - Continued.
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Figure5.8. - Contourplotsofdimensionlesspressureandfilmthicknessind _ree-dimenslonal
r_resentltionofpressuretorelli_icityl_lrameterIR)of]._. ThedimensionlesSl_lrlmetws
_J,W, _1 g areheldconstantaS(leflnelin IxluatbnLS.10).
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Figure5.9. - Contourplotsofdimensionlesspressurt,andfilmthicknessandthree-dimensionalrepre-
sentationofpressureforellipticil_parameler(k)of 1.5. ThedimensionlessparametersU. W, andG
areheldconstantasdefinedin equation(.5.10).

1976020483-158



141

Dimensionless '!

film thickness. _
H. h/Rx _,

A 4.8x106
B 5.0
C 5.3 !
D 5.7

E 6.Z j:':
F 6.8

G 7.5 [
H 8.4

H

G

(bl Contour plot of dimensionless film thickness.

Figure 5.9. - Continued.
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_,_ Figure5.10. - ContOurplotsOfdlmenslonlulpressureindfilmthicknessandItlrw-dlmeflslo_l
rlprlsentlflonotpressureforiIIIptlcNyI_rml_r (k)of1.;_. Thedim_lsionlessplrimtters U.
W.andGire heldoonsmntasddlnld in IKlumtlonC_,10).
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(b}Contnurplototdimensionlessfilmthickness.

Figure5.10.- Continual,
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Figure5.l_: - Contourplotsofdimensionlesspressureandfll_,th!ckne.,sandthree-dimensionalrepresentationof
pressureforalmenslonlessspeedparameter(U)of4.206x10- Thedimensionlessparam_ersk, W, and_ are
heldconstantasdefinednequation6.18).
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Figure5.13.- Continued.
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(c)Three-dimensionalrepresentationorpressure.

, __ Figure5.13.- Concluded,

J

1976020483-169



153

Dimensionless 1
pres;ure,
P" pIE'

A Z.8xlO"3 I :
B 1.6 s,
C 1.4
0 1.3
E l.l
F .9
6 .6
H .3

/ •

/ 4. " •

/ • w

/ •• " C w

B •m A _'

t mI m

I w

u _

ta) Contourplotofdimensionlesspressure.

F3gure5.14. - Contourplotsofdimensionlesspressureandfl_ thicknessandthree-dimensionalrepresentatiOnofpressurefordimensionlessspeedparameter(U)of 3.367x10-, Thedimensionlessparametersk, W, andGare
heldconstantasdefinedin equation(5.lSI.
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Figure5.14.- Continued.

\

1976020483-171



155

1976020483-172



Dimensionless
pressure,
P"p/E'

A 1.8x10-3
B ].6
C 1.4
D 1.3
E 1.1
F .9
G .6

- H .3

J" F %"-
w E •

i. _ B •/ .

r, / A

i -,

# ,

\ •
i_ mmma

(a)Contourplotofdimensionlesspressure.

Figure5.15. - Contourplotsofdimensionlesspressureandfilm.thicknessandthree-dlmensiomlrepresentJtion
-LLofpressurefordimensionlessspeedparameter(U)of 2.946x10 . Thedimensionlesspernmetersk. W.endG

areheldconstantasdefln_ In equation(5.18).
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Figure 5. It - Continued.

1976020483-174



158

Ic) Three-dimensior_1reOresentaltonof pressure,

_ure _.1_. - Conclud_l.
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Figure5.19.- Contourplotsofdimensionlesspressurearidf;Imthicknessandthree-dlmensionalrepre-
sentotionofpressu_ fordimensionlessspeedparam_er(U)of1.26:_10"11.l_edimensionlessparam-
etersk. W.andGarehewConstantasdefinedInequation5.18).
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(bl Contourp_ o_dimensionlessfilm tt_cknecs.

Fkjurt5,2'1.- Continu,,_.
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(b) Contour plot of dimensionless film thickness.

Figure 5. Z2. - Continued.
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(a)Contourplotof dimensionlesspressure.

Figure5.2t - Contourplotsofdimensionlesspressureandfilm,tJ_ioknessandthree-dimensionalrepresentation
ofpressurefordimensionlessspeedparameter(U)of 3.367x10"_':. Thedimensionlessconstantsk. W. andG

L_I arehemconstantasdefinedIn equation(5,18).
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(b)Contourplotofdlmensbnlessfilmthickness.

Figure.5.23.-Continued.
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Figure5.24. - Contourplotsofdimensionlesspressureandfilmt_cknessandthree-dimensionalrec_-resentitionofpressurefordimensionlessspeed(U)of2.525x]0" . Thedimensior,lessparameters
k, W, endOereheldconstantis definedIn equationO.18}.
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Fkjuro5.28.- Contlnuit
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ofpressurefordimensionlessImldparameter(W)ofO.221]x10"U. Thedimensionlessparametersk. U, andGare

heldconstantis deflnulIn equation6. _).
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(a) Contourplotofdimensionlesspressure.
Figure5. 32. Contourplotsofdimensionlesspressureandfilmthicknessandthree-dimensional

r_resentaticnofpressurefordimensionlessloadparameter(W)ofO.7371xlO-6. Thedimension-
lessparametersk. U, andGareheldconstantasdefinedbyequation(5.23).

i

1976020483-222



206

,r

j

1976020483-223



207



208

Dimensionless
pressure.
P - piE'

A I. 67x10-3
B 1.60
C 1.50 i
D l. 35
E 1.10
F .70
G .20

J E _,,

C

B

A ' _, '

w

.. •

• =B

(a) Contourplotofdimensionlesspres.'ire.

Figure5.33.- Contourplotsof dlrnenstonlesspressureandfilmthicknessandthree-dimensional
representatlonofpressurefordlmersionlessloedparameter(W)ofO.9214xtO-.o Thedlmenslon-
lessparametersk, U. andGareheldconstantasdefinedin equation(5.23).
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Figure5.34.- Contourplotsofdlmensionlosspressureandfilmthicknessendthree-dmensionel
representationofpressurefor dlmer,s onlessloadparameter(W)of1.tO6xlO'". Thedimension-
lessparametersK. U, endGereheldconstantasdefinedbyequation(5.23),
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_l) ConCur_ _ d_enslonlesspressure.

Figure5. 35.- ContourI)_$ M dlrnenslor_lessprlssurt lindfilmthicknessind.llwl_dlmenslmtllre_'esanllMIoflM pressuref'JrdlmorlslordessIMdp#rlmHlll¢M) of I. 210t]O"u. 11_dlnl_lSlOft
4 _s Inrame_Ir$k. U.mM Gvi hi__lanl _ _ Inequ_lDn6.Z3t.
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r Edgesof computingarea, wherepressureis assumedarnl)lentnt

Hwtzlan contactcircle-,
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Edgesof computingarec, where pressure is assumedamblen''_'

Figure6.1. - Computingarea in andaroundtheHerfziancontactcircle.
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(a)Dimensionlesspressure.

Figure6.3, - Contourplotsofdimensionlesspressureanddimensionlessfilm thicknessfordimensionlessinlet
distancemof4andgroup] oftable6.2.
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Fkjurl6.5. * ContourplotsOfdimensionlesspressureenddimensionlessfilm thicknessfordln_ensionless
Inletdistancemof2 andgroupI of table6.2,
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Figure6.6. - ContOurplotsofdimensionlesspressureanddimensionlessfilmthicknessfordimen-
sionlessInletOlstmncen$of1.$andgroupI oftable6.2.
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Iqqure6.]0. - Contourplotsofdimensionlesspressureariddimensionlessfilmthk_nessfordimension-
lessinletdistancemof 3andgroup2 oftable6.2,
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Figure6.11. - Contourplotsofdimensionlesspressureenddlmensbnios$filmthicknessfordimension- ilessInletdistancemof2.5 andgroup2 ofbl)le6.2,
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Ib}Dimensionlessfilmthld(ness.

Figure6.12.- Concluded.
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Figure6.13..- Contourplotsofdimensionlesspressureanddimensionlessfilmthicknessfordimensionlessinletdis-
lancem of6andgroup3oftable6.2.
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Flfure6.14, - Conlourplotsofdimensionlesspressureenddlmenslon!essfilmthickness#ordimensionlessInletdis-
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Fk)ure6.15. - Contourplotso_dimensiOnlessPressureanddimensiOnlessfilmthk:kness_- dimensiOnlessInletdistancem of)indgroup)oftable& 2.
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Figure6.16.- Conlourplotsofcllmenskm.lesspressureandcll_mslonles$filmthicknesstotdimensionlessInletdlslnr.amd l 5 andgro_ 3oftable6._,
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Figure6.17.- Contourplotso¢dimensionlesspressureanddlmeh_lonlessfilmthicknessfordimen-
sionlessInletdlstl_e mof2andgroup3of table6.2.
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Figure6.18.- Contourplotsofdimensionlesspr,_sureanddimensionlessfilmthicknessfordi-
mensionlessInletdlstIncemof1.75and_oup 3oftable6.2.
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(a)Dimensionlesspressure.

Figure6.19.- Contourplotsofdimensionlesspressureanddimensionlessfilmthicknessfor
dimensionlessInletdistancemof 1.5andgroup3• table6.2.
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Figure 6.19. - Concluded.
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(a) GroupI of table6.2.

Figure 6.20. - Effectof dimensionless inlet distanceon dimensionlesspressure
alongX-axis. Thevalueof Y is held fixed near the axisof symmetryof thecontact.
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Figure6.21.- Effectofdimensbnlessinletdistanceondimensionlessfilmthick-
nessalongX-axis. ThevalueofY isheldfixedneartheaxisofsymmetryof
thecontact.
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